The multi-systemic genetic disorder tuberous sclerosis complex (TSC) impacts multiple neurodevelopmental processes including neuronal morphogenesis, neuronal migration, myelination and gliogenesis. These alterations contribute to the development of cerebral cortex abnormalities and malformations. Although TSC is caused by mTORC1 hyperactivation, cognitive and behavioral impairments are not improved through mTORC1 targeting, making the study of the downstream effectors of this complex important for understanding the mechanisms underlying TSC. As mTORC1 has been shown to promote the activity of the transcriptional co-activator Yap, we hypothesized that altered Yap/Taz signaling contributes to the pathogenesis of TSC. We first observed that the levels of Yap/Taz are increased in human cortical tuber samples and in embryonic cortices of Tsc2 conditional knockout (cKO) mice. Next, to determine how abnormal upregulation of Yap/Taz impacts the neuropathology of TSC, we deleted Yap/Taz in Tsc2 cKO mice. Importantly, Yap/Taz/Tsc2 triple conditional knockout (tcKO) animals show reduced cortical thickness and cortical neuron cell size, despite the persistence of high mTORC1 activity, suggesting that Yap/Taz play a downstream role in cytomegaly. Furthermore, Yap/Taz/Tsc2 tcKO significantly restored cortical and hippocampal lamination defects and reduced hippocampal heterotopia formation. Finally, the loss of Yap/Taz increased the distribution of myelin basic protein in Tsc2 cKO animals, consistent with an improvement in myelination. Overall, our results indicate that targeting Yap/Taz lessens the severity of neuropathology in a TSC animal model. This study is the first to implicate Yap/Taz as contributors to cortical pathogenesis in TSC and therefore as potential novel targets in the treatment of this disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239747 | PMC |
http://dx.doi.org/10.1093/hmg/ddab374 | DOI Listing |
Exp Hematol Oncol
January 2025
Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China.
J Transl Med
January 2025
Department of Oncology, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China.
Background: Almonertinib is the initial third-generation EGFR-TKI in China, but its resistance mechanism is unknown. Cancer-associated fibroblasts (CAFs) are essential matrix components in the tumor microenvironment, but their impact on almonertinib resistance is unknown. This study aimed to explore the correlation between CAFs and almonertinib resistance in non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFACS Nano
January 2025
Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Soochow, Jiangsu 215000, China.
The extracellular matrix (ECM) stores signaling molecules and facilitates mechanical and biochemical signaling in cells. However, the influence of biomimetic "rejuvenation" ECM structures on aging- and degeneration-related cellular activities and tissue repair is not well understood. We combined physical extrusion and precise "on-off" alternating cross-linking methods to create anisotropic biomaterial microgels (MicroRod and MicroSphere) and explored how they regulate the cell activities of the nucleus pulposus (NP) and their potential antidegenerative effects on intervertebral discs.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
Bone fracture repair initiates by periosteal expansion. The periosteum is typically quiescent, but upon fracture, periosteal cells proliferate and contribute to bone fracture repair. The expansion of the periosteum is regulated by gene transcription; however, the molecular mechanisms behind periosteal expansion are unclear.
View Article and Find Full Text PDFThe Rac1 P29S hotspot mutation in cutaneous melanoma is associated with resistance to MAPK pathway inhibitors (MAPKi) and worse clinical outcomes. Moreover, activation of Rac1 guanine exchange factors (GEFs) also promotes MAPKi-resistance, particularly in undifferentiated melanoma cells. Here we delineate mechanisms of Rac1-driven MAPKi-resistance and identify strategies to inhibit the growth of this class of cutaneous melanomas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!