Background: Epidemiologic and some clinical studies support the view that whole grain foods have lower glycemic response than refined grain foods. However, from the perspective of food material properties, it is not clear why whole grain cereals containing mostly insoluble and nonviscous dietary fibers (e.g., wheat) would reduce postprandial glycemia.

Objectives: We hypothesized that glycemic response for whole grain wheat milled products would not differ from that of refined wheat when potentially confounding variables (wheat source, food form, particle size, viscosity) were matched. Our objective was to study the effect of whole grain wheat compared with refined wheat milled products on postprandial glycemia, gastric emptying, and subjective appetite.

Methods: Using a randomized crossover design, healthy participants (n = 16) consumed 6 different medium-viscosity porridges made from whole grain wheat or refined wheat milled products, all from the same grain source and mill: whole wheat flour, refined wheat flour, cracked wheat, semolina, reconstituted wheat flour with fine bran, and reconstituted wheat flour with coarse bran. Postprandial glycemia, gastric emptying, and appetitive response were measured using continuous glucose monitors, the 13C-octanoic acid (8:0) breath test, and visual analog scale (VAS) ratings. Bayes factors were implemented to draw inferences about null effects.

Results: Little-to-no differences were observed in glycemic responses, with lower incremental AUC between 0 and 120 min glycemic responses only for semolina [mean difference (MD): -966 mg min/dL; 95% CI: -1775, -156 mg min/dL; P = 0.02) and cracked wheat (MD: -721 mg min/dL; 95% CI: -1426, -16 mg min/dL; P = 0.04) than for whole wheat flour porridge. Bayes factors suggested weak to strong evidence for a null effect (i.e., no effect of treatment type) in glycemic response, gastric emptying, and VAS ratings.

Conclusions: Although whole grain wheat foods provide other health benefits, they did not in their natural composition confer lower postprandial glycemia or gastric emptying than their refined wheat counterparts.This trial was registered at clinicaltrials.gov as NCT03467659.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/nqab434DOI Listing

Publication Analysis

Top Keywords

refined wheat
24
grain wheat
20
gastric emptying
20
wheat flour
20
wheat
19
wheat milled
16
milled products
16
glycemic response
16
postprandial glycemia
12
glycemia gastric
12

Similar Publications

Characterization and In Vitro Digestion Kinetics of Purified Pulse Starches: Implications on Bread Formulation.

Foods

January 2025

Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.

This study investigated the contribution of pulse starches (PSs) to the slowly digestible starch (SDS) properties observed in pulses. Purified pulse starches from 17 commonly consumed pulses were examined, focusing on their digestion kinetics using a pancreatic alpha-amylase (PAA) and rat intestinal acetone powder (RIAP) mixture. Chickpea starch, exhibiting a slow digestibility profile, was incorporated as an ingredient to confer slow digestibility to refined wheat flour bread.

View Article and Find Full Text PDF

Leukemia is a prevalent cancer that severely affects children, and standard chemotherapy often leads to severe gastrointestinal symptoms and neutropenia. This study aimed to discover alternative treatments to prevent neutropenia in pediatric leukemia patients and minimize chemotherapy-related complications. This randomized, placebo-controlled trial was conducted on 52 children between the ages of 3 and 18 years who were suffering from acute leukemia and undergoing chemotherapy.

View Article and Find Full Text PDF

Introduction: Micronutrient deficiencies are common among women of reproductive age (WRA) and children in Senegal. Large-scale food fortification (LSFF) can help fill gaps in dietary intakes.

Methods: We used household food consumption data to model the contributions of existing LSFF programs (vitamin A-fortified refined oil and iron and folic acid-fortified wheat flour) and the potential contributions of expanding these programs to meeting the micronutrient requirements of WRA (15-49 years) and children (6-59 months).

View Article and Find Full Text PDF

Moderately mechanically activated starch in improving protein digestibility: Application in noodles.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China. Electronic address:

The aim of this study was to investigate the mechanism of protein digestibility improvement by exploring the changes in structural characteristics of proteins in noodles with varying levels of mechanically activated starch. Therefore, different levels of mechanically activated wheat starch were mixed with refined wheat flour to produce noodles. Results showed that moderately mechanically activated starch could significantly improve protein digestibility and noodles containing 8.

View Article and Find Full Text PDF

Reconciliation of wheat 660K and 90K SNP arrays and their utilization in dough rheological properties of bread wheat.

J Adv Res

January 2025

Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China. Electronic address:

Introduction: High-density Wheat 660K and 90K SNP arrays are powerful tools for understanding the genetic basis of wheat traits. However, their inconsistantly physical positions that were caused by different versions of Chinese Spring genome during developing arrays are confused and inconvenient for further application.

Objective: With the repid development of wheat geonome sequencing, we aim to reconciliate Wheat 660K and 90K SNP arrays in modern cultivar and reveal the genetic basis of dough rheological properties in bread wheat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!