Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein misfolding diseases are caused by the difficulty of a protein to attain or stably maintain its native three-dimensional structure. In 2011, the first small molecule that specifically binds to the folded state of a protein was approved by a regulatory agency to treat a protein misfolding disease (tafamidis, transthyretin amyloidosis). Subsequently, folded state binders for three additional pathologies were approved. All of these molecules bind specifically to and stabilize the native state of a misfolding-prone protein and either correct cellular folding or stabilize the native state against misfolding and aggregation. We will use these four case studies to explain how protein folding coupled to small molecule binding is a promising approach to treat a variety of human maladies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.sbi.2021.11.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!