Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present research we tackled the classification of seven genetic cardiac diseases and control subjects by using an extensive set of machine learning algorithms with their variations from simple K-nearest neighbor searching method to support vector machines. The research was based on calcium transient signals measured from induced pluripotent stem cell-derived cardiomyocytes. All in all, 55 different machine learning alternatives were used to model eight classes by applying the principle of 10-fold crossvalidation with the peak data of 1626 signals. The best classification accuracy of approximately 69% was given by random forests, which can be seen high enough here to show machine learning to be potential for the differentiation of the eight disease classes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2022.105218 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!