A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bacterial diversity and competitors for degradation of hazardous oil refining waste under selective pressures of temperature and oxygen. | LitMetric

Bacterial diversity and competitors for degradation of hazardous oil refining waste under selective pressures of temperature and oxygen.

J Hazard Mater

Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA, Tianjin 300457, PR China. Electronic address:

Published: April 2022

Oil refining waste (ORW) contains complex, hazardous, and refractory components, causing more severe long-term environmental pollution than petroleum. Here, ORW was used to simulate the accelerated domestication of bacteria from oily sludges and polymer-flooding wastewater, and the effects of key factors, oxygen and temperature, on the ORW degradation were evaluated. Bacterial communities acclimated respectively in 30/60 °C, aerobic/anaerobic conditions showed differentiated degradation rates of ORW, ranging from 5% to 34%. High-throughput amplicon sequencing and ORW component analysis revealed significant correlation between bacterial diversity/biomass and degradation efficiency/substrate preference. Under mesophilic and oxygen-rich condition, the high biomass and abundant biodiversity with diverse genes and pathways for petroleum hydrocarbons degradation, effectively promoted the rapid and multi-component degradation of ORW. While under harsh conditions, a few dominant genera still contributed to ORW degradation, although the biodiversity was severely restricted. The typical dominant facultative anaerobes Bacillus (up to 99.8% abundance anaerobically) and Geobacillus (up to 99.9% abundance aerobically and anaerobically) showed oxygen-independent sustainable degradation ability and broad-spectrum of temperature adaptability, making them promising and competitive bioremediation candidates for future application. Our findings provide important strategies for practical bioremediation of varied environments polluted by hazardous ORW.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.128201DOI Listing

Publication Analysis

Top Keywords

degradation
8
oil refining
8
refining waste
8
orw
8
orw degradation
8
bacterial diversity
4
diversity competitors
4
competitors degradation
4
degradation hazardous
4
hazardous oil
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!