Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study discusses a computer simulation for the equivalent ambient dose due to photons, H*(10)p, and neutrons, H*(10)n, in the patient's plane undergoing radiation therapy. A standard radiotherapy room with an additional shielding made by one lead or steel tenth-value layer was considered. A Varian 2100/2300 C/D linear accelerator head operating at 18 MV was modeled. Jaw openings of 5 cm × 5 cm, 10 cm × 10 cm, 20 cm × 20 cm, and 30 cm × 30 cm, as well as the multileaf collimator under eight different angles of gantry inclination, were also modeled. The use of steel in the shield generates a slightly raised average value of H*(10)p (0.527%) compared to when using lead. This finding can be interpreted as that the use of lead or steel coating makes no difference to the additional shield calculations when only photons are considered. When considering the contribution to H*(10)n, there is a significant difference (11.7% increase) for using lead compared to steel shielding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2021.110095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!