Glioblastoma, a type of brain cancer, is one of the most aggressive and lethal types of malignancy. The present study shows that JCI-20679, an originally synthesized mitochondrial complex I inhibitor, enhances the anti-proliferative effects of suboptimal concentrations of the clinically used chemotherapeutic drug temozolomide in glioblastoma cells. Analysis of the effects of temozolomide combined with JCI-20679 using isobologram and combination index methods demonstrated that the combination had synergistic effects in murine and human glioblastoma cells. We found that JCI-20679 inhibited the temozolomide-mediated induction of autophagy that facilitates cellular survival. The autophagy induced by temozolomide increased ATP production, which confers temozolomide resistance in glioblastoma cells. JCI-20679 blocked temozolomide-mediated increases in ATP levels and increased the AMP/ATP ratio. Furthermore, JCI-20679 enhanced the therapeutic effects of temozolomide in an orthotopic transplantation model of glioblastoma. These results indicate that JCI-20679 may be promising as a novel agent for enhancing the efficacy of temozolomide against glioblastoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2021.12.113 | DOI Listing |
Cells
January 2025
Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.
The overall goal of this work was to assess the ability of Natural Killer cells to kill cultures of patient-derived glioblastoma cells. Herein we report impressive levels of NK-92 mediated killing of various patient-derived glioblastoma cultures observed at ET (effector: target) ratios of 5:1 and 1:1. This enabled direct comparison of the degree of glioblastoma cell loss across a broader range of glioblastoma cultures.
View Article and Find Full Text PDFCancer Med
January 2025
Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Hadath, Lebanon.
Background: Glioblastoma (GBM) is the most common primary brain tumor in adults and has a median survival of less than 15 months. Advancements in the field of epigenetics have expanded our understanding of cancer biology and helped explain the molecular heterogeneity of these tumors. B-cell-specific Moloney murine leukemia virus insertion site-1 (Bmi-1) is a member of the highly conserved polycomb group (PcG) protein family that acts as a transcriptional repressor of multiple genes, including those that determine cell proliferation and differentiation.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.
Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy.
View Article and Find Full Text PDFPurpose: In glioblastoma, the therapeutically intractable and resistant phenotypes can be derived from glioma stem cells, which often have different underlying mechanisms from non-stem glioma cells. Aberrant signaling across the EGFR-PTEN-AKT-mTOR pathways have been shown as common drivers of glioblastoma. Revealing the inter and intra-cellular heterogeneity within glioma stem cell populations in relations to signaling patterns through these pathways may be key to precision diagnostic and therapeutic targeting of these cells.
View Article and Find Full Text PDFAm J Pathol
January 2025
Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil. Electronic address:
Drug resistance is a major challenge in cancer therapy, and the expression of efflux pumps such as P-glycoprotein (P-gp, ABCB1) often correlates with poor prognosis in various tumors, including glioblastoma (GB). Considering that different roles for these proteins have been established in the biology of various tumors, this study aimed to investigate the functions of P-gp in GB-derived cells by evaluating its survival, migratory, and apoptosis-regulating capabilities, as well as its potential as a liquid biopsy biomarker. P-gp expression was diminished via siRNA to determine its exact role in GB biology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!