MEG correlates of temporal regularity relevant to pitch perception in human auditory cortex.

Neuroimage

Wellcome Trust Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.

Published: April 2022

We recorded neural responses in human participants to three types of pitch-evoking regular stimuli at rates below and above the lower limit of pitch using magnetoencephalography (MEG). These bandpass filtered (1-4 kHz) stimuli were harmonic complex tones (HC), click trains (CT), and regular interval noise (RIN). Trials consisted of noise-regular-noise (NRN) or regular-noise-regular (RNR) segments in which the repetition rate (or fundamental frequency F0) was either above (250 Hz) or below (20 Hz) the lower limit of pitch. Neural activation was estimated and compared at the senor and source levels. The pitch-relevant regular stimuli (F0 = 250 Hz) were all associated with marked evoked responses at around 140 ms after noise-to-regular transitions at both sensor and source levels. In particular, greater evoked responses to pitch-relevant stimuli than pitch-irrelevant stimuli (F0 = 20 Hz) were localized along the Heschl's sulcus around 140 ms. The regularity-onset responses for RIN were much weaker than for the other types of regular stimuli (HC, CT). This effect was localized over planum temporale, planum polare, and lateral Heschl's gyrus. Importantly, the effect of pitch did not interact with the stimulus type. That is, we did not find evidence to support different responses for different types of regular stimuli from the spatiotemporal cluster of the pitch effect (∼140 ms). The current data demonstrate cortical sensitivity to temporal regularity relevant to pitch that is consistently present across different pitch-relevant stimuli in the Heschl's sulcus between Heschl's gyrus and planum temporale, both of which have been identified as a "pitch center" based on different modalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8883111PMC
http://dx.doi.org/10.1016/j.neuroimage.2022.118879DOI Listing

Publication Analysis

Top Keywords

regular stimuli
16
temporal regularity
8
regularity relevant
8
relevant pitch
8
stimuli
8
lower limit
8
limit pitch
8
source levels
8
evoked responses
8
pitch-relevant stimuli
8

Similar Publications

This review summarizes the mechanism and role of physical activity in maintaining the proper functioning of the musculoskeletal system. Bone adaptation to the mechanical environment occurs in skeletal regions subjected to the greatest stresses resulting from the nature of exercise, however, there is a varied response of bone tissue to mechanical loads depending on its material and structural properties (trabecular and cortical). The regulation of bone tissue metabolism during physical exercise is influenced by factors associated with mechanical stress (gravitational forces, impact loading, and muscular contractions) as well as by systemic mechanisms (hormones, myokines, cytokines).

View Article and Find Full Text PDF

Sucrose synthase gene family in common bean during pod filling subjected to moisture restriction.

Front Plant Sci

December 2024

Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico.

In common bean ( L.), leaf photosynthesis is significantly reduced under drought conditions. Previous studies have shown that some drought-tolerant cultivars use the pod walls to compensate the decreased photosynthesis rate in leaves by acting as temporary reservoirs of carbohydrates to support seed filling.

View Article and Find Full Text PDF

Development of plantaricin RX-8 loaded pectin/4-carboxyphenylboric acid/carboxymethyl chitosan hydrogel microbead: A potential targeted oral delivery system.

Int J Biol Macromol

December 2024

School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China. Electronic address:

Bacteriocin can effectively improve the gut inflammation for their superior antibacterial activity. However, its inherent attributes, such as easily degraded and off-target effect in the gastrointestinal environment, make bacteriocins' efficient oral delivery a great challenge. Herein, a pectin/4-carboxyphenylboric acid/carboxymethyl chitosan (PEC/CPBA/CMCS) hydrogel microbead targeted oral delivery system was innovatively developed for the plantaricin RX-8 protective delivery, precisely targeted inflammatory microenvironment (IME) and sustained released plantaricin RX-8 by pH/ROS dual stimulation response.

View Article and Find Full Text PDF

The local sweat rate (LSR) response to intradermal electrical stimulation generates a sigmodal stimulus-response curve with a peak sweat rate generated during a 30 s period of continuous stimuli at a frequency of 16 to 32 Hz. However, the firing pattern of the sudomotor nerve resembles more of a bursting pattern. We tested the hypothesis that a bursting pattern during intradermal electrical stimulation would result in a greater sweating response than the regular continuous stimulus pattern.

View Article and Find Full Text PDF

Well-posedness of Keller-Segel systems on compact metric graphs.

J Evol Equ

December 2024

Department of Mathematics and Statistics, Auburn University, Auburn, AL  36849 USA.

Chemotaxis phenomena govern the directed movement of microorganisms in response to chemical stimuli. In this paper, we investigate two Keller-Segel systems of reaction-advection-diffusion equations modeling chemotaxis on thin networks. The distinction between two systems is driven by the rate of diffusion of the chemo-attractant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!