Inhibition of cadmium uptake by wheat with urease-producing bacteria combined with sheep manure under field conditions.

Chemosphere

Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, PR China.

Published: April 2022

In heavy metal-contaminated farmland, microorganisms or organic fertilizers can be used to minimize heavy metal uptake by crops to ensure food safety. However, the mechanisms by which urease-producing and metal-immobilizing bacteria combined with manure inhibit Cd uptake in wheat (Triticum aestivum L.) remain unclear. Herein, the effects of Enterobacter bugandensis TJ6, sheep manure (SM), and TJ6 combined with SM on Cd uptake by wheat and the mechanisms involved were investigated under field conditions. The results showed that strain TJ6 increased the urease activity and the proportion of strains with a high Cd adsorption capacity in SM, thereby enhancing the Cd adsorption capacity of SM in solution. Strain TJ6 combined with SM improved the rhizosphere soil urease activity, NH/NO ratio, and pH, thus reducing the Cd content (75.9%) in wheat grain. In addition, TJ6+SM reduced the bacterial community diversity but shifted the structure of the bacterial community in rhizosphere soil. Interestingly, the relative abundances of urease-producing bacteria and metal-immobilizing bacteria (Enterobacter, Bacillus, Exiguobacterium, Rhizobium, and Serratia) in rhizosphere soil were enriched, which enhanced wheat resistance to Cd toxicity. These results showed that urease-producing and metal-immobilizing bacteria combined with sheep manure can inhibit the uptake of Cd by wheat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.133534DOI Listing

Publication Analysis

Top Keywords

uptake wheat
16
bacteria combined
12
sheep manure
12
metal-immobilizing bacteria
12
rhizosphere soil
12
urease-producing bacteria
8
combined sheep
8
field conditions
8
urease-producing metal-immobilizing
8
manure inhibit
8

Similar Publications

Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.

View Article and Find Full Text PDF

This research investigates the interactive effects of elevated ozone (eO) and carbon dioxide (eCO) on stomatal morphology and leaf anatomical characteristics in two wheat cultivars with varying O sensitivities. Elevated O increased stomatal density and conductance, causing oxidative stress and cellular damage, particularly in the O-sensitive cultivar PBW-550 (PW), compared to HUW-55 (HW). Conversely, eCO reduced stomatal density and pore size, mitigating O-induced damage by limiting O influx.

View Article and Find Full Text PDF

Chemical speciation and availability of molybdenum in soils to wheat uptake.

J Environ Manage

January 2025

Department of Agricultural Chemistry, National Taiwan University, Taipei, 106319, Taiwan. Electronic address:

Molybdenum (Mo) is an essential micronutrient for plants, yet it also poses potential environmental risks when present in excess. This study investigated the Mo speciation in soils with varying properties and their influences on Mo uptake by wheat (Triticum aestivum L.), a staple crop with significant implications for global food security.

View Article and Find Full Text PDF

Immobilization remediation is a widely employed technology that effectively reduces the migration rate and bioavailability of cadmium (Cd). Sepiolite, a commonly used remediation agent, has proven effective in decreasing soil Cd availability and reducing Cd accumulation in agricultural products. However, further investigation is needed to understand the impact of sepiolite on soil environmental quality and microbial communities.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored using drum-dried overripe Kepok plantain flour (KPF) as a substitute for wheat flour in instant noodles to improve their nutritional and textural properties.
  • Noodles with 10%, 20%, and 30% KPF substitutions showed varying effects on attributes like adhesiveness, elasticity, and cooking quality, with 20% yielding the best balance of firmness, shape retention, and reduced stickiness.
  • KPF also enhanced nutritional value by increasing resistant starch content and decreasing oil absorption, showcasing its potential as a functional ingredient for healthier instant noodles.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!