Seafood processing is an important economical activity worldwide and is an integral part of the food chain system. However, their processing results in solid waste generation whose disposal and management is a serious concern. Proteins, amino acids, lipids with high amounts of polyunsaturated fatty acids (PUFA), carotenoids, and minerals are abundant in the discards, effluents, and by-catch of seafood processing waste. As a result, it causes nutritional loss and poses major environmental risks. To solve the issues, it is critical that the waste be exposed to secondary processing and valorization for recovery of value added products. Although chemical waste treatment technologies are available, the majority of these procedures have inherent flaws. Biological solutions, on the other hand, are safe, efficacious, and ecologically friendly while maintaining the intrinsic bioactivities after waste conversion. Microbial fermentation or the actions of exogenously introduced enzymes on waste components are used in most bioconversion processes. Algal biotechnology has recently developed unique technologies for biotransformation of nutrients, which may be employed as a feedstock for the recovery of important chemicals as well as biofuel. Bioconversion methods combined with a bio-refinery strategy offer the potential to enable environmentally-friendly and cost-effective seafood waste management. The refinement of these wastes through sustainable bioprocessing interventions can give rise to various circular bioeconomies within the seafood processing sector. Moreover, a techno-economic perspective on the developed solid waste processing lines and its subsequent environmental impact could facilitate commercialization. This review aims to provide a comprehensive view and critical analysis of the recent updates in seafood waste processing in terms of bioconversion processes and byproduct development. Various case studies on circular bioeconomy formulated on seafood processing waste along with techno-economic feasibility for the possible development of sustainable seafood biorefineries have also been discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.152951 | DOI Listing |
J Agric Food Chem
January 2025
National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
This study aims to reveal the transduction signaling network that triggers sea cucumber () autolysis. The tandem mass tag (TMT) proteomics and transcriptomic techniques were used to analyze expression differences between inhibited and activated sea cucumber autolysis. Flow cytometry was used to identify apoptosis.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China. Electronic address:
To meet the demand of consumers for high-quality dry-cured fish. This study investigates the relationship between microbial diversity and the changes in physicochemical properties and non-volatile flavor compounds of dry-cured Spanish mackerel (DCSM) throughout the curing process. Our findings demonstrate that moisture content significantly decreased during curing, while NaCl generally increased.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, PR China. Electronic address:
Photodynamic inactivation (PDI) has emerged as a novel non-thermal process technology for inactivating microorganisms due to its low cost, safety, and efficiency. This study aimed to investigate the antimicrobial effect of VK-mediated PDI against Pseudomonas fluorescens (P. fluorescens) and to assess its impact on the quality of the blunt bream contaminated with P.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China. Electronic address:
In order to study the pattern of changes in quality of marinated Chinese mitten crabs (Eriocheir sinensis) during cold storage, three aspects of sensory, taste and odor were investigated. Sensory evaluation and total volatile basic nitrogen (TVB-N) were measured in viscera and abdomen muscle at 0, 7, 15 and 30 days of storage at 4°C. Sensory scores significantly declined at 15 d, coinciding with TVB-N levels exceeding 25 mg N/100 g.
View Article and Find Full Text PDFFood Res Int
January 2025
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China. Electronic address:
The aim of this study was to investigate the effects of the addition of Lactiplantibacillus plantarum 1-24-LJ and lipase on physicochemical indexes, nutrition, and flavour substances during Suanzharou's fermentation. Individually, the lipase supplementation expedited the synthesis of organic acids and free fatty acids, thus rapidly acidifying the fermentation environment. Compared to C (8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!