A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PARP inhibitor BMN-673 induced apoptosis by trapping PARP-1 and inhibiting base excision repair via modulation of pol-β in chromatin of breast cancer cells. | LitMetric

PARP inhibitor BMN-673 induced apoptosis by trapping PARP-1 and inhibiting base excision repair via modulation of pol-β in chromatin of breast cancer cells.

Toxicol Appl Pharmacol

Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology, Campus-11, Patia, Bhubaneswar, Odisha 751024, India. Electronic address:

Published: February 2022

PARP inhibitors emerged as clinically effective anti-tumor agents in combination with DNA damaging agents but the toxicity of DNA damaging agents and their off-target effects caused serious problems in cancer therapy. They confer cytotoxicity in cancer cells both by catalytic inhibition and trapping of PARP-1 at the DNA damage site. There is a lack of direct evidence to quantitatively determine the trapped PARP-1 in cellular DNA. Here, we have precisely evaluated the mechanism of PARP trapping mediated anti-cancer action of Quinacrine (QC), BMN-673, and their combination (QC + BMN-673) in breast cancer cells. We introduced a strategy to measure the cellular PARP trapping potentiality of BMN-673 in QC pretreated cells using a fluorescence-based assay system. It was found that QC+ BMN-673 induced apoptosis by triggering DNA damage in breast cancer cells. Treatment with QC + BMN-673 stimulated the expression of PARP-1 in the chromatin compared to that of PARP-2 and PARP-3. QC + BMN-673 treatment also caused a dose-dependent and time-dependent accumulation of PARP-1 and inhibition of PARylation in the chromatin. Upregulation of BER components (pol-β and FEN-1), an unchanged HR and NHEJ pathway proteins, and reduction of luciferase activity of the cells transfected with R-p21-P (LP-BER) were noted in combined drug-treated cells. Interestingly, silencing of pol-β resulted in unchanged PARP-1 trapping and PAR activity in the chromatin with increasing time after QC + BMN-673 treatment without altering APC and FEN-1 expression. Thus, our data suggested that the QC + BMN-673 augmented breast cancer cell death by pol-β mediated repair inhibition primarily through trapping of PARP-1 besides PARP-1 catalytic inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2021.115860DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
cancer cells
16
trapping parp-1
12
bmn-673 induced
8
induced apoptosis
8
parp-1
8
dna damaging
8
damaging agents
8
catalytic inhibition
8
inhibition trapping
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!