Enhancing catalytic ozonation activity of MCM-41 via one-step incorporating fluorine and iron: The interfacial reaction induced by hydrophobic sites and Lewis acid sites.

Chemosphere

School of Environment, South China Normal University, Guangzhou, 510006, China; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangzhou, 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou, 510006, China. Electronic address:

Published: April 2022

Fe-MCM-41 had been widely used as ozonation catalyst, however, the existence of large amount of hydrophilic silanol hindered its interfacial reaction with O and pollutants. To solve this problem, F-Fe-MCM-41 was synthesized by co-doping F and Fe into the framework of MCM-41 to replace silanol with Si-F groups through a one-step hydrothermal method. F introduced hydrophobic sites which contributed to more ibuprofen (IBP) chemisorption on the surface of F-Fe-MCM-41. Moreover, doping F also enhanced the acidity, which accelerated O decomposition into •OH. F-Fe-MCM-41/O exhibited notably activity with 96.6% IBP removal efficiency within 120 min, while only 78.5% and 80.9% in O alone and Fe-MCM-41/O, respectively. Surface Lewis acid sites and metal hydroxyl groups were considered as important factors for O activation and •OH generation. F-Fe-MCM-41 exhibited excellent catalytic performance under acidic and alkaline conditions. Comparative experiments revealed that F doping improved the interfacial reaction, especially the interfacial electron transfer, which resulted in the high catalytic activity of F-Fe-MCM-41. F-Fe-MCM-41 possessed good stability and reusability, with only 5.7% decline for IBP removal in five successive cycles. Furthermore, the possible degradation path of IBP was proposed according to DFT calculation and GC-MS analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.133544DOI Listing

Publication Analysis

Top Keywords

interfacial reaction
12
hydrophobic sites
8
lewis acid
8
acid sites
8
ibp removal
8
f-fe-mcm-41
5
enhancing catalytic
4
catalytic ozonation
4
ozonation activity
4
activity mcm-41
4

Similar Publications

Enzymatic grafting of 5-O-succinyl erythorbyl myristate onto chitosan to improve its emulsifying properties.

Carbohydr Polym

March 2025

Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Chitosan (CS) is a versatile polysaccharide with numerous inherent biological activity, while the lack of amphiphilicity limits its application in emulsion-based systems. In this study, erythorbyl myristate (EM) with interfacial activity was chemically modified to 5-O-succinyl EM (EMS) and grafted onto CS to improve the emulsifying properties. The grafting reaction was conducted by the catalysis of protease, with the progress of the reaction monitored by HPLC analysis and UV absorbance measurement.

View Article and Find Full Text PDF

Synergistic Atomic Environment Optimization of Nickel-Iron Dual Sites by Co Doping and Cr Vacancy for Electrocatalytic Oxygen Evolution.

J Am Chem Soc

January 2025

School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China.

The dual-site synergistic catalytic mechanism on NiFeOOH suggests weak adsorption of Ni sites and strong adsorption of Fe sites limited its activity toward alkaline oxygen evolution reaction (OER). Large-scale density functional theory (DFT) calculations confirm that Co doping can increase Ni adsorption, while the metal vacancy can reduce Fe adsorption. The combined two factors can further modulate the atomic environment and optimize the free energy toward oxygen-containing intermediates, thus enhancing the OER activity.

View Article and Find Full Text PDF

Spatial correlation of desorption events accelerates water exchange dynamics at Pt/water interfaces.

Chem Sci

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China

The altered solvation structures and dynamical properties of water molecules at the metal/water interfaces will affect the elementary step of an electrochemical process. Simulating the interfacial structure and dynamics with a realistic representation will provide us with a solid foundation to make a connection with experimental studies. To surmount the accuracy-efficiency tradeoff and provide dynamical insights, we use state-of-the-art machine learning molecular dynamics (MLMD) to study the water exchange dynamics, which are fundamental to adsorption/desorption and electrochemical reaction steps.

View Article and Find Full Text PDF

Multifunctional Siloxane Additive Enabling Ultrahigh-Nickel Lithium Battery with Long Cycle Life at 30  and 60 °C.

Small

January 2025

School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510640, China.

Ultrahigh-nickel layered oxide cathodes (≥90% nickel) possess exceptionally high discharge capacities, which can significantly improve the energy density of lithium-ion batteries and alleviate the driving range anxiety of electric vehicles. However, the high interfacial reactivity of ultrahigh-nickel cathodes, especially the detrimental side reactions with harmful acidic species like HF in the electrolyte, can deteriorate the battery interface and reduce the cycle life, hindering their practical application. In this study, 3-isocyanatopropyltrimethoxysilane (PTTS-NCO) is introduced as the electrolyte additive, which can effectively scavenge the harmful acidic species in the electrolyte and form a protective surface layer at the electrode/electrolyte interface, thereby enhancing the electrochemical performance of the battery (NCM90/Li).

View Article and Find Full Text PDF

Rational regulation of active hydrogen (*H) behavior is crucial for advancing electrocatalytic nitrate reduction reaction (NO3RR) to ammonia (NH3), yet in-depth understanding of the *H generation, transfer, and utilization remains ambiguous, and explorations for *H dynamic optimization are urgently needed. Herein we engineer a Ni3N nanosheet array intimately decorated with Cu nanoclusters (NF/Ni3N-Cu) for remarkably boosted NO3RR. From comprehensive experimental and theoretical investigations, the Ni3N moieties favors water dissociation to generate *H, and then *H can rapidly transfer to the Cu via unique reverse hydrogen spillover mediating interfacial Ni-N-Cu bridge bond, thus increasing *H coverage on the Cu site for subsequent deoxygenation/hydrogenation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!