The airway epithelium is composed of multiple cell types each with designated roles. A stereotyped ratio of these cells is essential for proper airway function. Imbalance of airway cell types underlies many lung diseases, including chronic obstructive pulmonary disease (COPD) and asthma. While a number of signals and transcription factors have been implicated in airway cell specification, how cell numbers are coordinated, especially at the protein level is poorly understood. Here we show that in the mouse trachea which contain epithelial cell types similar to human airway, epithelium-specific inactivation of Fbxw7, which encodes an E3 ubiquitin ligase, led to reduced club and ciliated cells, increased goblet cells, and ectopic P63-negative, Keratin5-positive transitory basal cells in the luminal layer. The protein levels of FBXW7 targets including NOTCH1, KLF5 and TGIF were increased. Inactivation of either Notch1, Klf5 but not Tgif genes in the mutant background led to attenuation of selected aspects of the phenotypes, suggesting that FBXW7 acts through different targets to control different cell fates. These findings demonstrate that protein-level regulation by the ubiquitin proteasome system is critical for balancing airway cell fates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2021.12.017 | DOI Listing |
Int J Mol Sci
January 2025
Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden.
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is dysfunctional in individuals with cystic fibrosis (CF). The permeability of CFTR can be experimentally manipulated though different mechanisms, including activation via inducing the phosphorylation of residues in the regulatory domain as well as altering the gating/open probability of the channel. Phosphorylation/activation of the channel is achieved by exposure to compounds that increase intracellular cAMP, with forskolin and IBMX commonly used for this purpose.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia.
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene. Currently, CFTR modulators are the most effective treatment for CF; however, they may not be suitable for all patients. A representative and convenient model is needed to screen therapeutic agents under development.
View Article and Find Full Text PDFBiomolecules
January 2025
BioLympho Research Group, Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
This study aims to develop a protocol for respiratory disease-associated biomarker discovery by combining urine proteome studies with urinary exosome components analysis (i.e., miRNAs).
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
Asthma has been extensively studied in humans and animals, but the molecular mechanisms underlying asthma in Meishan pigs, a breed with distinct genetic and physiological characteristics, remain elusive. Understanding these mechanisms could provide insights into veterinary medicine and human asthma research. We investigated asthma pathogenesis in Meishan pigs through transcriptomic and metabolomic analyses of blood samples taken during autumn and winter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!