Substantial research has been carried out on rapid, nondestructive, and inexpensive techniques for predicting cheese composition using spectroscopy in the visible and near-infrared radiation range. Moreover, in recent years, new portable and handheld spectrometers have been used to predict chemical composition from spectra captured directly on the cheese surface in dairies, storage facilities, and food plants, removing the need to collect, transport, and process cheese samples. For this review, we selected 71 papers (mainly dealing with prediction of the chemical composition of cheese) and summarized their results, focusing our attention on the major sources of variation in prediction accuracy related to cheese variability, spectrometer and spectra characteristics, and chemometrics techniques. The average coefficient of determination obtained from the validation samples ranged from 86 to 90% for predicting the moisture, fat, and protein contents of cheese, but was lower for predicting NaCl content and cheese pH (79 and 56%, respectively). There was wide variability with respect to all traits in the results of the various studies (standard deviation: 9-30%). This review draws attention to the need for more robust equations for predicting cheese composition in different situations; the calibration data set should consist of representative cheese samples to avoid bias due to an overly specific field of application and ensure the results are not biased for a particular category of cheese. Different spectrometers have different accuracies, which do not seem to depend on the spectrum extension. Furthermore, specific areas of the spectrum-the visible, infrared-A, or infrared-B range-may yield similar results to broad-range spectra; this is because several signals related to cheese composition are distributed along the spectrum. Small, portable instruments have been shown to be viable alternatives to large bench-top instruments. Last, chemometrics (spectra pre-treatment and prediction models) play an important role, especially with regard to difficult-to-predict traits. A proper, fully independent, validation strategy is essential to avoid overoptimistic results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2021-20640 | DOI Listing |
Int J Environ Health Res
March 2025
Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic.
The aim of this research is to analyse the impact of surface cleaner type and hydrodynamic flow on bacterial detachment. For that purpose, a new liquid flow chamber was constructed and applied. In experiments, was grown on linoleum surfaces that are used in health care institutions.
View Article and Find Full Text PDFChempluschem
March 2025
Shanghai University, Chemistry, Shangda Road 99, 200444, Shanghai, CHINA.
Electrochemiluminescence (ECL) combines electrochemical redox processes with photochemical light emission, offering exceptional sensitivity, spatial control, and stability. Widely applied in biosensing, medical diagnostics, and environmental monitoring, its efficiency often depends on advanced catalytic materials. Single-atom catalysts (SACs), featuring isolated metal atoms dispersed on a support, have emerged as promising candidates due to their unique electronic structures, high atom utilization, and tunable catalytic properties.
View Article and Find Full Text PDFOrg Lett
March 2025
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, India.
A one-pot process involving cycloaddition of the azaoxyallyl cation with thioamide and a synchronous E1-type elimination of the C2 amino group from the cycloadduct is disclosed, leading to diverse alkylidene-4-thiazolidinones. Amine elimination under acid-free conditions or without quaternization and forging a stereoselective olefin formation were among the interesting reactivity traits revealed through the present work. Conjugated thioamide permitted side-chain branching through a three-component process.
View Article and Find Full Text PDFChemistry
March 2025
Henan Normal University, School of chenistry and chemical engineering, 46# East of Construction Road, 453007, Xinxiang, CHINA.
Here,we disclose a halogen α-nucleophilic addition via photocatalytic oxidation of the in-situ generated α-carbonyl radical of amides or esters to corresponding α-carbonyl cation. The α-carbon radical is generated by the β-addition of difluoroalkyl radical, formed by the photocatalytic reduction of BrCF2CO2R, to the α,β-unsaturated amides/esters. This umpolung strategy enables an efficient three-component difluoroalkyl-halogenation of α,β-unsaturated amides or esters with BrCF2CO2R and Cl/F-nucleophiles to produce diverse biologically important CF2-containing α-halo-1,5-dicarboxylic derivatives under mild conditions.
View Article and Find Full Text PDFChemphyschem
March 2025
Universität Siegen, Physikalische Chemie, Adolf-Reichwein-Str. 2, 57076, Siegen, GERMANY.
Organic-inorganic halocuprates(I) form a promising class of light-emitting materials with high photoluminescence (PL) quantum yield. However, the understanding of their emission properties and the PL mechanism is still limited. Here, we investigate thin films of bis(tetrapropylammonium) hexa-µ-bromo-tetrahedro-tetracuprate(I), [N(C3H7)4]2[Cu4Br6], which has a zero-dimensional (0D) molecular salt structure containing [Cu4Br6]2- ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!