Functional analysis of the second methyltransferase in the bacteriophage exclusion system of Lactobacillus casei Zhang.

J Dairy Sci

Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China. Electronic address:

Published: March 2022

The antiphage ability is an important feature of fermentation strains in the dairy industry. Our previous work described the bacteriophage exclusion (BREX) system in the probiotic strain, Lactobacillus casei Zhang. The function of L. casei Zhang pglX gene in mediating 5'-ACRCAG-3' methylation was also confirmed. This study aimed to further dissect the function of the BREX system of L. casei Zhang by inactivating its second methyltransferase gene (LCAZH_2054). The methylome of the mutant, L. casei Zhang Δ2054, was profiled by single-molecule real-time sequencing. Then, the cell morphology, growth, plasmid transformation efficiency, and stability of the wildtype and mutant were compared. The mutant did not have an observable effect in microscopic and colony morphology, but it reached a higher cell density after entering the exponential phase without obvious increase in the cell viability. The mutant had fewer 5'-ACRCAG-3' methylation compared with the wildtype (1835 versus 1906). Interestingly, no significant difference was observed in the transformation efficiency between the 2 strains when plasmids without cognate recognition sequence (pSec:Leiss:Nuc and pGhost9) were transformed, contrasting to transforming cells with cognate recognition sequence-containing plasmids (pMSP3535 and pTRKH2). The efficiency of transforming pMSP3535 into the LCAZH_2054 mutant was significantly lower than the wildtype, whereas an opposite trend was seen in pTRKH2 transformation. Moreover, compared with the wildtype, the mutant strain had higher capacity in retaining pMSP3535 and lower capacity in retaining pTRKH2, suggesting an unequal tolerance level to different foreign DNA. In conclusion, LCAZH_2054 was not directly responsible for 5'-ACRCAG-3' methylation in L. casei Zhang, but it might help regulate the function and specificity of the BREX system.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2021-21000DOI Listing

Publication Analysis

Top Keywords

casei zhang
24
brex system
12
5'-acrcag-3' methylation
12
second methyltransferase
8
bacteriophage exclusion
8
lactobacillus casei
8
transformation efficiency
8
wildtype mutant
8
compared wildtype
8
cognate recognition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!