We study the effect of self-interaction errors on the barrier heights of chemical reactions. For this purpose, we use the well-known Perdew-Zunger self-interaction-correction (PZSIC) [J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)] as well as two variations of the recently developed, locally scaled self-interaction correction (LSIC) [Zope et al., J. Chem. Phys. 151, 214108 (2019)] to study the barrier heights of the BH76 benchmark dataset. Our results show that both PZSIC and especially the LSIC methods improve the barrier heights relative to the local density approximation (LDA). The version of LSIC that uses the iso-orbital indicator z as a scaling factor gives a more consistent improvement than an alternative version that uses an orbital-dependent factor w based on the ratio of orbital densities to the total electron density. We show that LDA energies evaluated using the self-consistent and self-interaction-free PZSIC densities can be used to assess density-driven errors. The LDA reaction barrier errors for the BH76 set are found to contain significant density-driven errors for all types of reactions contained in the set, but the corrections due to adding SIC to the functional are much larger than those stemming from the density for the hydrogen transfer reactions and of roughly equal size for the non-hydrogen transfer reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0070893DOI Listing

Publication Analysis

Top Keywords

barrier heights
16
locally scaled
8
density-driven errors
8
transfer reactions
8
barrier
5
study self-interaction-errors
4
self-interaction-errors barrier
4
heights
4
heights locally
4
scaled perdew-zunger
4

Similar Publications

Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.

View Article and Find Full Text PDF

Determinants of dementia diagnosis in U.S. primary care in the past decade: A scoping review.

J Prev Alzheimers Dis

February 2025

Department of Health Behavior and Health Equity, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109-2029, United States.

Background: Alzheimer's disease and related dementias (ADRD) are chronically underdiagnosed in the U.S., particularly among minoritized racial and ethnic groups.

View Article and Find Full Text PDF

The present study aimed to explore the effect of GF powder on the growth performance, diarrhea rate, antioxidant and immune capacity, and intestinal health of weaned piglets. A total of 144 weaned piglets (8.29 ± 0.

View Article and Find Full Text PDF

Reduced Glutathione Promoted Growth Performance by Improving the Jejunal Barrier, Antioxidant Function, and Altering Proteomics of Weaned Piglets.

Antioxidants (Basel)

January 2025

Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330006, China.

Reduced glutathione (GSH) is a main nonenzymatic antioxidant, but its effects and underlying mechanisms on growth and intestinal health in weaned piglets still require further assessment. A total of 180 weaned piglets were randomly allotted to 5 groups: a basal diet (CON), and a basal diet supplemented with antibiotic chlortetracycline (ABX), 50 (GSH1), 65 (GSH2), or 100 mg/kg GSH (GSH3). Results revealed that dietary GSH1, GSH2, and ABX improved body weight and the average daily gain of weaned piglets, and ABX decreased albumin content but increased aspartate aminotransferase (AST) activity and the ratio of AST to alanine transaminase levels in plasma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!