Functional modification of grain proteins by dual approaches: Current progress, challenges, and future perspectives.

Colloids Surf B Biointerfaces

Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil. Electronic address:

Published: March 2022

Protein modification is a practical strategy to enhance the functional characteristics of proteins and broaden their commercial applications. Various chemical (e.g., pH-shifting, deamidation, succinylation), physical (e.g., sonication, high-speed shearing), or biological (e.g., microbial transglutaminase cross-linking, enzymatic hydrolysis) modification methods have frequently been employed to improve the functionality of native grain proteins. However, progress in intensification has led to the emergence of advanced methodologies, which involve the combination of modification techniques, generally known as "Dual Modification". This paper aims to comprehensively review the most recent researches focusing on the effects of dual modification on the functionality of grain proteins. Particular emphasis is given to elucidate the impact of this technique on physicochemical and structural properties. Furthermore, existing challenges and limitations associated with the utilization of this approach are highlighted, and prospects are proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2021.112306DOI Listing

Publication Analysis

Top Keywords

grain proteins
12
functional modification
4
modification grain
4
proteins
4
proteins dual
4
dual approaches
4
approaches current
4
current progress
4
progress challenges
4
challenges future
4

Similar Publications

Various lipid and biopolymer-based nanocarriers have been developed to encapsulate food ingredients. The selection of nanocarrier type, preparation techniques, and loading methods should consider the compatibility of nutrient properties, nanocarrier composition, and product requirements. This review focuses on the loading methods for hydrophilic and hydrophobic substances, along with a detailed exploration of nanocarrier categorization, composition, and preparation methods.

View Article and Find Full Text PDF

Overexpressing OsNF-YB12 elevated the content of jasmonic acid and impaired drought tolerance in rice.

Plant Sci

January 2025

Shanghai Agrobiological Gene Center, Shanghai, 201106 China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China. Electronic address:

Nuclear factor Y (NF-Y) is an evolutionarily conserved heterotrimeric transcription factor in eukaryotes. In a previous study, OsNF-YB12 was confirmed to be associated with drought tolerance using the Ecotilling method. In this study, real-time quantitative RT-PCR revealed that OsNF-YB12 was induced by various abiotic stresses and phytohormones, with expression levels differing between leaves and roots.

View Article and Find Full Text PDF

Celiac Disease: A Transitional Point of View.

Nutrients

January 2025

Clinical Immunology Outpatient Clinic, Division of Internal Medicine, Department of Advanced Medical and Surgical Sciences, "Luigi Vanvitelli" University of Campania, 80131 Naples, Italy.

Celiac disease (CeD) is a chronic, lifelong, multifactorial, polygenic, and autoimmune disorder, characteristically triggered by exposure to the exogenous factor "gluten" in genetically predisposed individuals, with resulting duodenal inflammation and enteropathy, as well as heterogeneous multisystemic and extraintestinal manifestations. The immunopathogenesis of CeD is complex, favored by a peculiar human leukocyte antigen (HLA) genetic predisposition, leading to gluten presentation by antigen-presenting cells to CD4+ T helper (Th) cells, T cell-B cell interactions, and production of specific antibodies, resulting in the immune-mediated killing of enterocytes and, macroscopically, in duodenal inflammation. Here, the most relevant correlations between cellular and molecular aspects and clinical manifestations of this complex disease are reviewed, with final considerations on nutritional aspects for disease management.

View Article and Find Full Text PDF

Non-celiac gluten/wheat sensitivity (NCGWS) is a syndrome for which pathogenesis and management remain debated. It is described as a condition characterized by gastrointestinal and extra-intestinal symptoms rapidly occurring after gluten ingestion in subjects who have had celiac disease or wheat allergy excluded. To date, the diagnosis of NCGWS is challenging as no universally recognized biomarkers have been yet identified, nor has a predisposing genetic profile been described.

View Article and Find Full Text PDF

Flavonoids are a large group of secondary metabolites, which are responsible for pigmentation, signaling, protection from unfavorable environmental conditions, and other important functions, as well as providing numerous benefits for human health. Various stages of flavonoid biosynthesis are subject to complex regulation by three groups of transcription regulators-MYC-like bHLH, R2R3-MYB and WDR which form the MBW regulatory complex. We attempt to cover the main aspects of this intriguing regulatory system in plants, as well as to summarize information on their distinctive features in cereals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!