The analysis of reactant at different regions of the bioreaction interface is significant for the study on the influence of interface condition on bioreaction. In this study, we proposed a localized surface plasmon resonance (LSPR) biosensing platform for local charge density monitoring and corresponding analytes detection based on the bio-electron transfer modulation of plasmon resonance. Core-shell nanocomposites of polyaniline coated gold nanoparticles were synthesized for the enhanced sensitivity of plasmon resonance to applied electric potential. Tin-doped indium oxide (ITO) substrates modified with the nanocomposites were used as LSPR chip for optical and electrochemical measurements simultaneously. The charge sensitivity of LSPR was verified with external electric potential modulation theoretically and experimentally. Through layer-by-layer self-assembly immobilization of glucose oxidase (GOD) on the LSPR chips, the charge transfer monitoring during the bioreaction of glucose catalysis was further demonstrated based on the bio-electron transfer modulation of LSPR. By equivalent circuit method, the charge density of the LSPR chip were detected with optical extinction peak shifts, and the limit of detection was about 0.51 μC/cm. This bio-electron transfer modulated LSPR provides a promising approach for the detection of spatial charge densities and the evaluation of bioreaction substances at different region of single chip.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2021.113956 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!