An ion chromatography system employing a low-cost three-dimensional printed absorbance detector for indirect ultraviolet detection towards portable phosphate analysis of environmental and industrial waters has been developed. The optical detection cell was fabricated using stereolithography three-dimensional printing of nanocomposite material. Chromatographic analysis and detection of phosphate were carried out using a CS5A 4 × 250 mm analytical column with indirect ultraviolet detection using a 255 nm light-emitting diode. Isocratic elution using a 0.6 mM potassium phthalate eluent combined with 1.44 mM sodium bicarbonate was employed at a flow rate of 0.75 mL/min. A linear calibration range of 0.5 to 30 mg/L PO applicable to environmental and wastewater analysis was achieved. For retention time and peak area repeatability, relative standard deviation values were 0.68 and 4.09%, respectively. Environmental and wastewater samples were analyzed with the optimized ion chromatography platform and the results were compared to values obtained by an accredited ion chromatograph. For the analysis of environmental samples, relative errors of <14 % were achieved. Recovery analysis was also carried out on both freshwater and wastewater samples and recovery results were within the acceptable range for water analysis using standard ion chromatography methods.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.202100897DOI Listing

Publication Analysis

Top Keywords

indirect ultraviolet
12
ion chromatograph
8
three-dimensional printed
8
printed absorbance
8
absorbance detector
8
detector indirect
8
detection phosphate
8
ion chromatography
8
ultraviolet detection
8
analysis environmental
8

Similar Publications

Ultraviolet (UV) exposure causes direct and indirect damages to skin structures. Human adipose stem cell-conditioned medium (hASC-CM) is a collection of several soluble factors, such as cytokines, chemokines, and Growth Factors (GF), secreted by almost all living cells in the extracellular space which support wound healing and skin rejuvenation. To determine the effects of human adipose stem cell-conditioned medium (hASC-CM) in photoaged skin and evaluate photoaging improvement after treatment.

View Article and Find Full Text PDF

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

Context: The two-dimensional graphene/MoTe heterostructure holds extensive potential applications in optoelectronic devices, sensors, and catalysts. To expand its optical applications, this study systematically investigates the adsorption stability of metal atoms (Au, Pt, Pd, and Fe) on the graphene/MoTe and their influence on its optoelectronic properties employing first-principles methods. The findings indicate that after the adsorption of Au and Pd, the structure retains its direct bandgap properties, while the adsorption of Pt and Fe exhibits indirect bandgap characteristics.

View Article and Find Full Text PDF

: In environments with high-frequency contact surfaces, drug-resistant bacteria, such as carbapenem-resistant and methicillin-resistant (MRSA), can survive for extended periods, contributing to healthcare-associated infections. Ultraviolet (UV)-C irradiation often fails to adequately disinfect shadowed areas, leading to a persistent contamination risk. We evaluated the effectiveness of using a UV-C containment unit (UVCCU) in conjunction with UV-C irradiation to improve the sterilization effects on both direct and indirect surfaces, including shadowed areas, and to assess the leakage of UV radiation to the surroundings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!