Agriculture's global challenge to feed an estimated 7.7 billion people is further exacerbated by less available cropland for production and rapidly changing climate patterns. Pesticides are often utilized to minimize crop losses due to pest infestations; however, problems arise when these chemicals are transported off production acreage, either by storm or irrigation events, and into nearby water bodies. Innovative management practices are needed to not only reduce the volume of runoff, but also to mitigate various pollutants, such as pesticides, within the runoff. One such practice being evaluated involves using rice (Oryza sativa) as a pesticide mitigation tool. While rice plants may serve as a mechanism for phytoremediation, whether the seeds harvested from exposed plants could then be utilized as a human food source is an unanswered question. Thirty round mesocosms (55 L volume; 56 cm diameter; six replicates per treatment) were established with rice and exposed to aqueous concentrations of the pesticides clomazone, propanil, or cyfluthrin, as well as a mixture of the three pesticides. Six replicates with rice and no pesticide exposure served as controls. Initial pesticide exposure took place 8 weeks post-planting and continued once a week for 5 weeks. Rice plants, unmilled seeds, and mesocosm sediment were collected from each mesocosm 2 weeks after seed formation began and analyzed for pesticide concentrations using gas chromatography. Concentrations of pesticides in unmilled seed were below detection for individual exposures of clomazone, propanil, and cyfluthrin. When rice was exposed to the pesticide mixture, the mean ± SE unmilled seed cyfluthrin concentration was 14.8 ± 1.25 µg kg. These small-scale, preliminary studies offer insight into the possibility of using immature rice plants as a phytoremediation tool, while harvesting its grain after plant maturation for human consumption. Further research is needed to address this question on a larger scale and with multiple pesticide mixtures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-021-03423-0 | DOI Listing |
Plant Dis
January 2025
LSU AgCenter, Plant Pathology and Crop Physiology, Baton Rouge, Louisiana, United States.
In July 2023, panicle and leaf blight-like symptoms were observed from the rice () variety, PVL03, in research field plots in Louisiana (Rayne, LA 70578, USA; 30.21330⁰ N, 92.37309⁰ W).
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
The development of a single and multiplex gene editing system is highly desirable for either functional genomics or pyramiding beneficial alleles in crop improvement. CRISPR/Cas12i3, which belongs to the Class II Type V-I Cas system, has attracted extensive attention recently due to its smaller protein size and less restricted canonical "TTN" protospacer adjacent motif (PAM). However, due to its relatively lower editing efficiency, Cas12i3-mediated multiplex gene editing has not yet been documented in plants.
View Article and Find Full Text PDFJ Exp Bot
January 2025
University of Bonn, Institute for Crop Science and Resource Conservation, Crop Functional Genomics, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany.
Boron deficiency is an abiotic stress that negatively impacts plant growth and yield worldwide. Boron deficiency primarily affects the development of plant meristems, groups of stem cells critical for all postembryonic tissue growth. The link between boron and meristem development was first established in 1923, when boron's essentiality was discovered.
View Article and Find Full Text PDFHeliyon
January 2025
Centre for Agriculture and Bioscience International (CABI), New Delhi, 110012, India.
Bacterial leaf blight (BLB) in rice, caused by the pathogen pv. , is a significant agricultural problem managed through chemical control and cultivating rice varieties with inherent resistance to the bacterial pathogen. Research has highlighted the potential of using antagonistic microbes which can suppress the BLB pathogen through the production of secondary metabolites like siderophores, rhamnolipids, and hydroxy-alkylquinolines offering a sustainable alternative for BLB management.
View Article and Find Full Text PDFBreed Sci
September 2024
Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan.
Asian rice ( L.) was domesticated from wild rice ( Griff.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!