Previous studies have shown that vitamin D3 may be a potential factor in insulin resistance, but the relationship between vitamin D3 and insulin resistance still remains controversial. At present, more research is needed to explore the relationship between vitamin D3 and insulin resistance. The samples from 2009 to 2018 in NHANES database were analyzed to Investigate the relationship and the potential mechanism. We performed a cross-sectional study of five periods in the NHANES database. Finally, 9298 participants were selected through strict inclusion and exclusion criteria, Multivariate logistic regression analysis and curve fitting were conducted to explore the relationship between vitamin D3 level and insulin resistance. Moreover, subgroup analysis was used to further prove the association. The results revealed that there was a strong association between vitamin D3 and insulin resistance (OR 0.82, 95% CI 0.72-0.93). However, subgroup analyses indicated that this correlation varied between individuals and races. There was a negative correlation between vitamin D3 level and insulin resistance, which provides a new proof for exploring the influencing factors of insulin resistance. More well-designed studies are still needed to further elaborate on these associations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741779PMC
http://dx.doi.org/10.1038/s41598-021-04109-7DOI Listing

Publication Analysis

Top Keywords

insulin resistance
32
relationship vitamin
12
vitamin insulin
12
association vitamin
8
insulin
8
resistance
8
cross-sectional study
8
explore relationship
8
nhanes database
8
vitamin level
8

Similar Publications

Background: Accurate distinction between stroke etiologic subtypes is critical for physicians to provide tailored treatment. The triglyceride-glucose (TyG) index, a marker of insulin resistance, has been associated with stroke risk but its role in distinguishing stroke etiologic subtypes remains unclear. We aimed to assess the TyG index's ability to differentiate cardioembolic (CE) from non-cardioembolic (NCE) strokes.

View Article and Find Full Text PDF

Background: The triglycerides to Apolipoprotein A1 ratio (TG/APOA1) holds promise to be a more valuable index of insulin resistance for the diagnosis of metabolic dysfunction-associated fatty liver disease (MAFLD) in type 2 diabetes mellitus (T2DM). This study aims to evaluate the correlation between TG/APOA1 and MAFLD, as well as compare the efficacy of TG/APOA1 with triglycerides to high-density lipoprotein cholesterol ratio (TG/HDL-c) and triglyceride-glucose (TyG) index in identifying MAFLD among individuals with T2DM.

Method: This study consecutively recruited 779 individuals with T2DM for the investigation.

View Article and Find Full Text PDF

Background: Body mass index (BMI) consistently correlates with the triglyceride-glucose (TyG) index, a marker of insulin resistance, which in turn is linked to heightened cardiovascular disease (CVD) risk. Thus, insulin resistance could potentially mediate the association between BMI and CVD risk. However, few studies have explored this mechanism in the general population.

View Article and Find Full Text PDF

The role of multimodality imaging in diabetic cardiomyopathy: a brief review.

Front Endocrinol (Lausanne)

December 2024

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States.

Diabetic cardiomyopathy (DMCM), defined as left ventricular dysfunction in the setting of diabetes mellitus without hypertension, coronary artery disease or valvular heart disease, is a well-recognized entity whose prevalence is certainly predicted to increase alongside the rising incidence and prevalence of diabetes mellitus. The pathophysiology of DMCM stems from hyperglycemia and insulin resistance, resulting in oxidative stress, inflammation, cardiomyocyte death, and fibrosis. These perturbations lead to left ventricular hypertrophy with associated impaired relaxation early in the course of the disease, and eventually culminating in combined systolic and diastolic heart failure.

View Article and Find Full Text PDF

Background: Type 2 Diabetes Mellitus (T2DM) is a significant public health burden. Emerging evidence links volatile organic compounds (VOCs), such as benzene to endocrine disruption and metabolic dysfunction. However, the effects of chronic environmentally relevant VOC exposures on metabolic health are still emerging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!