Neural decoding can be conceptualized as the problem of mapping brain responses back to sensory stimuli via a feature space. We introduce (i) a novel experimental paradigm that uses well-controlled yet highly naturalistic stimuli with a priori known feature representations and (ii) an implementation thereof for HYPerrealistic reconstruction of PERception (HYPER) of faces from brain recordings. To this end, we embrace the use of generative adversarial networks (GANs) at the earliest step of our neural decoding pipeline by acquiring fMRI data as participants perceive face images synthesized by the generator network of a GAN. We show that the latent vectors used for generation effectively capture the same defining stimulus properties as the fMRI measurements. As such, these latents (conditioned on the GAN) are used as the in-between feature representations underlying the perceived images that can be predicted in neural decoding for (re-)generation of the originally perceived stimuli, leading to the most accurate reconstructions of perception to date.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741893 | PMC |
http://dx.doi.org/10.1038/s41598-021-03938-w | DOI Listing |
Nat Commun
December 2024
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, 100871, Beijing, China.
Deciphering how noncoding DNA determines gene expression is critical for decoding the functional genome. Understanding the transcription effects of noncoding genetic variants are still major unsolved problems, which is critical for downstream applications in human genetics and precision medicine. Here, we integrate regulatory-specific neural networks and tissue-specific gradient-boosting trees to build SVEN: a hybrid sequence-oriented architecture that can accurately predict tissue-specific gene expression level and quantify the tissue-specific transcriptomic impacts of structural variants across more than 350 tissues and cell lines.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Psychology, Cornell University, Ithaca, NY, USA.
Subjective feelings are thought to arise from conceptual and bodily states. We examine whether the valence of feelings may also be decoded directly from objective ecological statistics of the visual environment. We train a visual valence (VV) machine learning model of low-level image statistics on nearly 8000 emotionally charged photographs.
View Article and Find Full Text PDFBioinform Adv
December 2024
Computer Science Department, Indiana University, Bloomington, IN 47408, United States.
Motivation: Microbial signatures in the human microbiome are closely associated with various human diseases, driving the development of machine learning models for microbiome-based disease prediction. Despite progress, challenges remain in enhancing prediction accuracy, generalizability, and interpretability. Confounding factors, such as host's gender, age, and body mass index, significantly influence the human microbiome, complicating microbiome-based predictions.
View Article and Find Full Text PDFFront Behav Neurosci
December 2024
Department of Neurophysiology, Niigata University School of Medicine, Niigata, Japan.
Animacy perception, the ability to discern living from non-living entities, is crucial for survival and social interaction, as it includes recognizing abstract concepts such as movement, purpose, and intentions. This process involves interpreting cues that may suggest the intentions or actions of others. It engages the temporal cortex (TC), particularly the superior temporal sulcus (STS) and the adjacent region of the inferior temporal cortex (ITC), as well as the dorsomedial prefrontal cortex (dmPFC).
View Article and Find Full Text PDFFront Microbiol
December 2024
College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
In the contemporary field of life sciences, researchers have gradually recognized the critical role of microbes in maintaining human health. However, traditional biological experimental methods for validating the association between microbes and diseases are both time-consuming and costly. Therefore, developing effective computational methods to predict potential associations between microbes and diseases is an important and urgent task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!