Comparative proteomic analysis of nuclear and cytoplasmic compartments in human cardiac progenitor cells.

Sci Rep

Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.

Published: January 2022

Clinical trials evaluating cardiac progenitor cells (CPC) demonstrated feasibility and safety, but no clear functional benefits. Therefore a deeper understanding of CPC biology is warranted to inform strategies capable to enhance their therapeutic potential. Here we have defined, using a label-free proteomic approach, the differential cytoplasmic and nuclear compartments of human CPC (hCPC). Global analysis of cytoplasmic repertoire in hCPC suggested an important hypoxia response capacity and active collagen metabolism. In addition, comparative analysis of the nuclear protein compartment identified a significant regulation of a small number of proteins in hCPC versus human mesenchymal stem cells (hMSC). Two proteins significantly upregulated in the hCPC nuclear compartment, IL1A and IMP3, showed also a parallel increase in mRNA expression in hCPC versus hMSC, and were studied further. IL1A, subjected to an important post-transcriptional regulation, was demonstrated to act as a dual-function cytokine with a plausible role in apoptosis regulation. The knockdown of the mRNA binding protein (IMP3) did not negatively impact hCPC viability, but reduced their proliferation and migration capacity. Analysis of a panel of putative candidate genes identified HMGA2 and PTPRF as IMP3 targets in hCPC. Therefore, they are potentially involved in hCPC proliferation/migration regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742012PMC
http://dx.doi.org/10.1038/s41598-021-03956-8DOI Listing

Publication Analysis

Top Keywords

analysis nuclear
8
compartments human
8
cardiac progenitor
8
progenitor cells
8
hcpc
8
hcpc versus
8
comparative proteomic
4
analysis
4
proteomic analysis
4
nuclear
4

Similar Publications

The sarcoma ring trial: a case-based analysis of inter-center agreement across 21 German-speaking sarcoma centers.

J Cancer Res Clin Oncol

January 2025

Sarcoma Unit, Department of Surgery, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

Purpose: The management of soft tissue sarcoma (STS) at reference centers with specialized multidisciplinary tumor boards (MTB) improves patient survival. The German Cancer Society (DKG) certifies sarcoma centers in German-speaking countries, promoting high standards of care. This study investigated the variability in treatment recommendations for localized STS across different German-speaking tertiary sarcoma centers.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA), a highly aggressive form of cancer, is known for its high mortality rate. A Disintegrin and Metalloprotease Domain-like Protein Decysin-1 (ADAMDEC1) can promote the development and metastasis in various tumors by degrading the extracellular matrix. However, its regulatory mechanism in CCA remains unclear.

View Article and Find Full Text PDF

ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK.

View Article and Find Full Text PDF

Insights into Toxicological Mechanisms of Per-/polyfluoroalkyl Substances by Using Omics-centered Approaches.

Environ Pollut

January 2025

College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China. Electronic address:

The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure.

View Article and Find Full Text PDF

Chermesins I-N: Bioactive spiromeroterpenoids from the marine-sourced fungus Penicillium chermesinum AS-400.

Phytochemistry

January 2025

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China. Electronic address:

Six previously undescribed spiromeroterpenoids, chermesins I-N (1-6), were isolated and identified from the marine-sourced fungus Penicillium chermesinum AS-400. Their structures were determined by nuclear magnetic resonance and mass spectroscopic data, and the relative and absolute configurations were confirmed based on nuclear Overhauser effect spectroscopic experiments, electronic circular dichroism (ECD) calculations and X-ray crystallographic analysis, and by comparisons of ECD Cotton effects with those of known congeners as well. Structurally, compound 1 represents the first example of spiromeroterpenoid demethylated at C-4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!