Gasoline direct injection (GDI) engines emit less carbon dioxide (CO) than port fuel injection (PFI) engines when fossil fuel conditions are the same. However, GDI engines emit more ultrafine particulate matter, which can have negative health effects, leading to particulate emission regulations. To satisfy these regulations, various studies have been done to reduce particulate matter, and several studies focused on lubricants. This study focuses on the influence of lubricant on the formation of particulate matter and its effect on particulate emissions in GDI engines. An instrumented, combustion and optical singe-cylinder GDI engine fueled by four different lubricant-gasoline blends was used with various injection conditions. Combustion experiments were used to determine combustion characteristics, and gaseous emissions indicated that the lubricant did not influence mixture homogeneity but had an impact on unburned fuels. Optical experiments showed that the lubricant did not influence spray but did influence wall film formation during the injection period, which is a major factor affecting particulate matter generation. Particulate emissions indicated that lubricant included in the wall film significantly affected PN emissions depending on injection conditions. Additionally, the wall film influenced by the lubricant affected the overall particle size and its distribution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742123PMC
http://dx.doi.org/10.1038/s41598-021-03873-wDOI Listing

Publication Analysis

Top Keywords

particulate matter
16
gdi engines
12
wall film
12
direct injection
8
engines emit
8
particulate emissions
8
injection conditions
8
emissions indicated
8
indicated lubricant
8
lubricant influence
8

Similar Publications

Tobacco use is the leading cause of death globally and in the U.S. After decades of decline, driven by decreases in combusted tobacco use, nicotine product use has increased due to Electronic Nicotine Delivery Systems (ENDS), also known as e-cigarettes or vapes.

View Article and Find Full Text PDF

Air pollution, particularly fine particulate matter (PM2.5), is a global health issue affecting millions. In southern Chile, firewood used for heating exacerbates pollution, especially in winter.

View Article and Find Full Text PDF

Lysoglycerophospholipid metabolism alterations associated with ambient fine particulate matter exposure: Insights into the pro-atherosclerotic effects.

Environ Pollut

January 2025

SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China. Electronic address:

The biological pathways connecting ambient fine particulate matter (PM)-induced initial adverse effects to the development of atherosclerotic cardiovascular diseases are not fully understood. We hypothesize that lysoglycerophospholipids (LysoGPLs) are pivotal mediators of atherosclerosis induced by exposure to PM. This study investigated the changes of LysoGPLs in response to PM exposure and the mediation role of LysoGPLs in the pro-atherosclerotic effects of PM exposure.

View Article and Find Full Text PDF

Utilizing Martian samples for future planetary exploration-Characterizing hazards and resources.

Proc Natl Acad Sci U S A

January 2025

Division of Space, Ecological, Arctic, and Resource-limited (SPEAR) Medicine, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA 02114.

One of the most surprising and important findings of the first human landings on the Moon was the discovery of a very fine layer of lunar dust covering the entire surface of Moon along with the negative impacts of this dust on the well-being and operational effectiveness of the astronauts, their equipment, and instrumentation. The United States is now planning for human missions to Mars, a planet where dust can also be expected to be ubiquitous for many or most landing sites. For these missions, the design and operations of key hardware systems must take this dust into account, especially when related to crew health and safety.

View Article and Find Full Text PDF

This study aimed to test the use of Rietveld refinement on respirable aerosol samples to determine the phase of respirable crystalline silica (RCS) and other minerals. The results from the Rietveld refinement were compared to an external standard method and gravimetrical measurements. Laboratory samples consisting of α-quartz, feldspar, and calcite with variable proportions and total mass loadings were made and analyzed using the NIOSH 7500 , followed by Rietveld refinement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!