Induced magnetic field and viscous dissipation on flows of two immiscible fluids in a rectangular channel.

Sci Rep

School of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.

Published: January 2022

The unsteady, magneto-hydrodynamic generalized Couette flows of two immiscible fluids in a rectangular channel with isothermal walls under the influence of an inclined magnetic field and an axial electric field have been investigated. Both fluids are considered electrically conducting and the solid boundaries are electrically insulated. Approximate analytical solutions for the velocity, induced magnetic, and temperature fields have been determined using the Laplace transform method along with the numerical Stehfest's algorithm for the inversion of the Laplace transforms. Also, for the nonlinear differential equation of energy, a numerical scheme based on the finite differences has been developed. A particular case has been numerically and graphically studied to show the evolution of the fluid velocity, induced magnetic field, and viscous dissipation in both flow regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741955PMC
http://dx.doi.org/10.1038/s41598-021-03313-9DOI Listing

Publication Analysis

Top Keywords

induced magnetic
12
magnetic field
12
field viscous
8
viscous dissipation
8
flows immiscible
8
immiscible fluids
8
fluids rectangular
8
rectangular channel
8
velocity induced
8
field
4

Similar Publications

Ammonia is a product of amino acid metabolism that accumulates in the blood of patients with liver cirrhosis, leading to neurotoxic effects and hepatic encephalopathy (HE). HE manifestations can range from mild, subclinical disturbances in cognition, or minimal HE (mHE) to gross disorientation and coma, a condition referred to as overt HE. Many blood-based biomarkers reflecting these neurotoxic effects of ammonia and liver disease can be measured in the blood allowing the development of new biomarkers to diagnose cirrhosis patients at risk of developing HE.

View Article and Find Full Text PDF

Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).

View Article and Find Full Text PDF

Observation of Large Low-Field Magnetoresistance in Layered (NdNiO):NdO Films at High Temperatures.

Adv Mater

January 2025

State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.

Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.

View Article and Find Full Text PDF

Inducing magnetic ordering in a non-ferrous layered double hydroxides (LDHs) instigates higher spin polarization, which leads to enhanced efficiency during oxygen evolution reaction (OER). In nano-sized magnetic materials, the concept of elongated grains drives domain alignment under the application of an external magnetic field. Hence, near the solid electrode interface, modified magnetohydrodynamics (MHD) positively impacts the electrocatalytic ability of non-ferrous nanocatalysts.

View Article and Find Full Text PDF

Antiferromagnets with broken time-reversal ( ) symmetry ( -odd antiferromagnets) have gained extensive attention, mainly due to their ferromagnet-like behavior despite the absence of net magnetization. However, certain types of -odd antiferromagnets remain inaccessible by the typical ferromagnet-like phenomena (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!