The canonical view of motor control is that distal musculature is controlled primarily by the contralateral cerebral hemisphere; unilateral brain lesions typically affect contralateral but not ipsilateral musculature. Contralateral-only limb deficits following a unilateral lesion suggest but do not prove that control is strictly contralateral: the loss of a contribution of the lesioned hemisphere to the control of the ipsilesional limb could be masked by the intact contralateral drive from the nonlesioned hemisphere. To distinguish between these possibilities, we serially inactivated the parietal reach region, comprising the posterior portion of medial intraparietal area, the anterior portion of V6a, and portions of the lateral occipital parietal area, in each hemisphere of 2 monkeys (23 experimental sessions, 46 injections total) to evaluate parietal reach region's contribution to the contralateral reaching deficits observed following lateralized brain lesions. Following unilateral inactivation, reach reaction times with the contralesional limb were slowed compared with matched blocks of control behavioral data; there was no effect of unilateral inactivation on the reaction time of either ipsilesional limb reaches or saccadic eye movements. Following bilateral inactivation, reaching was slowed in both limbs, with an effect size in each no different from that produced by unilateral inactivation. These findings indicate contralateral organization of reach preparation in posterior parietal cortex. Unilateral brain lesions typically affect contralateral but not ipsilateral musculature. Contralateral-only limb deficits following a unilateral lesion suggest but do not prove that control is strictly contralateral: the loss of a contribution of the lesioned hemisphere to the control of the ipsilesional limb could be masked by the intact contralateral drive from the nonlesioned hemisphere. Unilateral lesions cannot distinguish between contralateral and bilateral control, but bilateral lesions can. Here we show similar movement initiation deficits after combined unilateral and bilateral inactivation of the parietal reach region, indicating contralateral organization of reach preparation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8896556 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0232-21.2021 | DOI Listing |
Alzheimers Dement
December 2024
University of California, San Francisco (UCSF), San Francisco, CA, USA.
Background: Microglia responses to Aβ and tau pathology and the dysregulation of the microglial role in synaptic function may determine the onset and course of Alzheimer's disease (AD). While significant work has been performed in mouse models, we still lack a complete understanding of physiological and pathological microglial states and functions in human AD brain.
Method: For immunoblotting of brain homogenates against multiple microglial markers, and flow cytometry (FC) analysis of synaptosomal fractions (SNAP25/CD47/Aβ(10G4)/phospho-tau(AT8)), 49 cryopreserved human parietal cortex samples were categorized into four groups: low pathology control (LPC), high Aβ control (HAC), high pathology control (HPC), and AD.
Exp Brain Res
December 2024
Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, SD, USA.
Injury to one cerebral hemisphere can result in paresis of the contralesional hand and subsequent preference of the ipsilesional hand in daily activities. However, forced use therapy in humans can improve function of the contralesional paretic hand and increase its use in daily activities, although the ipsilesional hand may remain preferred for fine motor activities. Studies in monkeys have shown that minimal forced use of the contralesional hand, which was the preferred hand prior to brain injury, can produce remarkable recovery of function.
View Article and Find Full Text PDFCureus
November 2024
Hematology and Oncology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, USA.
Extranodal marginal zone lymphoma (EMZL) is a rare subtype of non-Hodgkin's lymphoma characterized by the malignant transformation of lymphoid tissue at sites affected by chronic inflammation. Pleural marginal zone lymphoma (PMZL) is an infrequent manifestation of this condition. We report a case of PMZL co-occurring with primary lung adenocarcinoma.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People's Republic of China.
Purpose: MicroRNA-34c-5p (miR-34c-5p) plays a pivotal role in bone remodeling, yet its therapeutic potential is hindered by challenges such as instability, limited cellular internalization, and immune responses. This study was aimed at developing innovative scaffolds capable of efficiently delivering microRNAs (miRNAs), specifically miR-34c-5p.
Methods: Chitosan (CS)/sodium tripolyphosphate (STPP)/sodium alginate (SA) scaffolds, referred to as CTS scaffolds, were synthesized at a specific ratio and characterized using dynamic light scattering and scanning electron microscopy (SEM).
Biol Psychol
November 2024
Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome 00135, Italy; Santa Lucia Foundation IRCCS, Rome 00179, Italy. Electronic address:
Stimulus-driven actions are preceded by preparatory brain activity that can be expressed by event-related potentials (ERP). Literature on this topic has focused on simple actions, such as the finger keypress, finding activity in frontal, parietal, and occipital areas detectable up to two seconds before the stimulus onset. Little is known about the preparatory brain activity when the action complexity increases, and specific brain areas designated to achieve movement integration intervene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!