Exercise following immobility increases lower motor neuron excitability: F-wave and H-reflex studies.

Neurophysiol Clin

Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Lisbon, Portugal; Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte. Lisbon, Portugal. Electronic address:

Published: April 2022

Objectives: The excitability of lower motor neurons can be explored non-invasively by several neurophysiological techniques, e.g., F-wave and H-reflex studies after a period of immobility and then after subsequent exercise. The aim of this study is to investigate the impact of exercise and high frequency repetitive nerve stimulation (RNS) following changes induced by 75 min of immobility.

Methods: We studied 10 healthy subjects following 75 min lower limb immobility, then randomized to RNS or cycling on different days. The neurophysiological studies of M-response, F-wave latency, F/M amplitude ratio and persistence; H-reflex threshold and latency, H/M amplitude ratio, and homosynaptic depression were performed at baseline, after immobility and immediately following the intervention, using stimulation of posterior tibial and peroneal nerves.

Results: After immobility F-wave latencies were delayed and homosynaptic depression at 2 Hz was increased (p < 0.025). RNS had no effect, but cycling exercise reduced H-reflex latencies (p = 0.025) and decreased homosynaptic depression at 2 Hz.

Discussion: Our findings suggest that both proprioceptive stimulation and supraspinal pathways modulate intraspinal physiological changes after immobility. These observations suggest that specific exercise protocols may be useful in managing patients recovering from periods of immobility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neucli.2021.12.004DOI Listing

Publication Analysis

Top Keywords

lower motor
8
f-wave h-reflex
8
h-reflex studies
8
amplitude ratio
8
homosynaptic depression
8
exercise immobility
4
immobility increases
4
increases lower
4
motor neuron
4
neuron excitability
4

Similar Publications

A comparison of force adaptation in toddlers and adults during a drawer opening task.

Sci Rep

January 2025

Department of Psychology, Faculty of Psychology and Sport Science, Justus Liebig University, Otto-Behaghel-Str. 10F, 35394, Gießen, Germany.

Adapting movements to rapidly changing conditions is fundamental for interacting with our dynamic environment. This adaptability relies on internal models that predict and evaluate sensory outcomes to adjust motor commands. Even infants anticipate object properties for efficient grasping, suggesting the use of internal models.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the dose-response relationship between different exercise types and the alleviation of motor symptoms in Parkinson's Disease patients.

Design: A systematic review and network meta-analysis were conducted to compare the effects of 12 exercise types on motor symptoms in Parkinson's Disease patients using randomized controlled trials.

Methods: A systematic search was conducted across PubMed, Medline, Embase, PsycINFO, Cochrane Library, and Web of Science until September 10, 2024.

View Article and Find Full Text PDF

Background: Preterm infants are at high risk for subsequent neurodevelopmental disability. Early developmental characterization of brain and neurobehavioral function is critical for identifying high-risk infants. This study aimed to elucidate the early evolution of sensorimotor function in preterm neonates by exploring postnatal age-related changes in the brain white matter (WM) and neurobehavioral abilities.

View Article and Find Full Text PDF

Purpose: Cerebral palsy (CP) is the most prevalent motor disability affecting children. Many children with CP have significant speech difficulties and require augmentative and alternative communication (AAC) to participate in communication. Despite demonstrable benefits, the use of AAC systems among children with CP remains constrained, although research in Canada is lacking.

View Article and Find Full Text PDF

Executive function (EF) impairments are prevalent in survivors of neonatal critical illness such as children born very preterm (VPT) or with complex congenital heart disease (cCHD). This paper aimed to describe EF profiles in school-aged children born VPT or with cCHD and in typically developing peers, to identify child-specific and family-environmental factors associated with these profiles and to explore links to everyday-life outcomes. Data from eight EF tests assessing working memory, inhibition, cognitive flexibility, switching, and planning in  = 529 children aged between 7 and 16 years was subjected into a latent profile analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!