A surfactant-mediated microextraction of synthetic dyes from solid-phase food samples into the primary amine-based supramolecular solvent.

Food Chem

Institute of Chemistry, Saint-Petersburg University, St.Petersburg State University, SPbSU, SPbU, 7/9 Universitetskaya nab., St., Petersburg 199034, Russia.

Published: June 2022

An effective and simple surfactant-mediated microextraction of synthetic dyes from solid-phase food samples into the primary amine-based supramolecular solvents is presented for the first time. The developed procedure involved two stages: (i) an isolation of dyes from a solid-phase food sample into a micellar solution of the primary amine; (ii) a preconcentration of the extracted dyes into the supramolecular solvent phase generated from the obtained micellar solution under a coacervation process. The microextraction procedure was applied for the determination of synthetic dyes in confectionery, dried fruits, and spices samples. The supramolecular solvent formed from aqueous micelle aggregates of 1-octylamine due to coacervation induced by thymol provided maximum extraction recovery values for synthetic dyes. In the proposed two-stage extraction procedure the micellar solution of primary amine was a media for analytes isolation from solid-phase and their followed preconcentration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.131812DOI Listing

Publication Analysis

Top Keywords

synthetic dyes
16
dyes solid-phase
12
solid-phase food
12
supramolecular solvent
12
micellar solution
12
surfactant-mediated microextraction
8
microextraction synthetic
8
food samples
8
samples primary
8
primary amine-based
8

Similar Publications

Endophytes have significant prospects for applications beyond their existing utilization in agriculture and the natural sciences. They form an endosymbiotic relationship with plants by colonizing the root tissues without detrimental effects. These endophytes comprise several microorganisms, including bacteria and fungi.

View Article and Find Full Text PDF

Toxic and carcinogenic compounds, such as synthetic dyes and polyphenols, were widely employed and released as pollutants in a variety of industries, including textiles, food, and cosmetics. Biological oxidation process that used oxidizing enzymes to breakdown pollutant compounds were environmentally favorable. However, due to the cell toxicity of metal ions supplements used for the biosynthesis of oxidizing enzymes like laccase, their efficient application for biological degradation is limited.

View Article and Find Full Text PDF

The textile industry's rapid growth and reliance on synthetic fibres have generated significant environmental pollution, highlighting the urgent need for sustainable waste management practices. Chemical recycling offers a promising pathway to reduce textile waste by converting used fibres into valuable raw materials, yet technical challenges remain due to the complex compositions of textile waste, such as dyes, additives, and blended fabrics.

View Article and Find Full Text PDF

Effluents containing synthetic anionic dyes can pose a risk to ecosystems, and they must be treated before their release to the environment. Biosorption, a simple and effective process, may be a promising solution for treating these effluents. In this work, chitosan beads were crosslinked with epichlorohydrin to produce a highly stable and performant biosorbent to remove Brilliant Blue FCF dye.

View Article and Find Full Text PDF

Actinomycete-Derived Pigments: A Path Toward Sustainable Industrial Colorants.

Mar Drugs

January 2025

Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Campus Caparica, 2829-516 Caparica, Portugal.

Pigment production has a substantial negative impact on the environment, since mining for natural pigments causes ecosystem degradation, while synthetic pigments, derived from petrochemicals, generate toxic by-products that accumulate and persist in aquatic systems due to their resistance to biodegradation. Despite these challenges, pigments remain essential across numerous industries, including the cosmetic, textile, food, automotive, paints and coatings, plastics, and packaging industries. In response to growing consumer demand for sustainable options, there is increasing interest in eco-friendly alternatives, particularly bio-based pigments derived from algae, fungi, and actinomycetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!