Herein, the novel strategy of copper oxide (CuO) deposited oxygen-doped nitrogen incorporated nanodiamond (NOND)/Si pyramids (Pyr-Si) heterostructure is studied for high-performance nonenzymatic glucose sensor. The combined properties of surface-modified NOND/Pyr-Si induced by different growth durations (5 to 20 min) of CuO is envisioned to improve glucose sensitivity and stability. For comparison, the same methods and parameters were deposited on the plane silicon wafers. The systematic analysis reveals the best glucose sensing properties of 15 min grown CuO/NOND/Pyr-Si based sensor, with a high sensitivity of 1993 μA mM cm, a lower limit of detection of 0.1 μm, and a longer stability of 28 d (∼96%). In addition, the present sensor exhibits good selectivity of glucose among other analytes such as sodium chloride, ascorbic acid, uric acid, and so on. The enhancement in glucose sensing performances of the as-fabricated CuO/NOND/Pyr-Si is ascribed to the interfacial effect of NOND and the synergistic effect of CuO and NOND/Pyr-Si. Moreover, the oxygen dopant in NOND and CuO stimulates the reactive oxygen species while measuring glucose and affords rapid recovery (<2 s). This promotes fast electron kinetics in the electrocatalytic solutions, which enhances the electroactive area and thereby contributes to a high sensitivity. These salient results suggested that the as-fabricated CuO/NOND/Pyr-Si sensor is more suitable for high-performance biosensors and effective energy storage device applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.8b00454DOI Listing

Publication Analysis

Top Keywords

nonenzymatic glucose
8
glucose sensor
8
glucose sensing
8
glucose
7
cuo
5
interfacial oxygen-doped
4
oxygen-doped nanodiamond
4
nanodiamond cuo
4
cuo micropyramidal
4
micropyramidal silicon
4

Similar Publications

Article Synopsis
  • Glucose sensing is essential for managing diabetes, and this study explores NbCT-selenium nanoparticles for effective nonenzymatic glucose detection.
  • The composite material was characterized using techniques like scanning and transmission electron microscopy, and it was tested on a gold disc electrode in an alkaline solution.
  • The sensor operates at a low overpotential of 0.16 V, demonstrating a detection range of 2 to 30 mM, with a notable sensitivity of 4.15 µA mM cm and a detection limit of 1.1 mM.
View Article and Find Full Text PDF

Glycated Hemoglobin and Cardiovascular Disease in Patients Without Diabetes.

J Clin Med

December 2024

Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 38 St., 41-800 Zabrze, Poland.

Cardiovascular diseases (CVDs) are one of the most critical public health problems in the contemporary world because they are the leading cause of morbidity and mortality. Diabetes mellitus (DM) is one of the most substantial risk factors for developing CVDs. Glycated hemoglobin is a product of the non-enzymatic glycation of hemoglobin present in erythrocytes.

View Article and Find Full Text PDF

A Hierarchical Core-Shell Structure of NiO@CuO-CF for Effective Non-Enzymatic Electrochemical Glucose Detection.

Nanomaterials (Basel)

December 2024

Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China.

Non-enzymatic glucose detection is an effective strategy to control the blood glucose level of diabetic patients. A novel hierarchical core-shell structure of nickel hydroxide shell coated copper hydroxide core based on copper foam (Ni(OH)@Cu(OH)-CF) was fabricated and derived from NiO@CuO-CF for glucose sensing. Cyclic voltammetry and amperometry experiments have demonstrated the efficient electrochemical catalysis of glucose under alkaline conditions.

View Article and Find Full Text PDF

Photoelectrochemical sensors have been studied for glucose detection because of their ability to minimize background noise and unwanted reactions. Titanium dioxide (TiO), a highly efficient material in converting light into electricity, cannot utilize visible light. In this regard, we developed a nonenzymatic glucose sensor by using a simple one-step electrospinning technique to combine cupric oxide with TiO to create a heterojunction.

View Article and Find Full Text PDF

Facet engineering of CuO for efficient electrochemical glucose sensing.

Anal Chim Acta

January 2025

Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, PR China. Electronic address:

Background: Accurate monitoring glucose level is significant for human health management, especially in the prevention, diagnosis, and management of diabetes. Electrochemical quantification of glucose is a convenient and rapid detection method, and the crucial aspect in achieving great sensing performance lies in the selection and design of the electrode material. Among them, CuO, with highly catalysis ability, is commonly used as electrocatalyst in non-enzymatic glucose sensing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!