Polyether ether ketone (PEEK, ) is an important material for the fabrication of implants employed in spinal fusion surgery. Although its radiolucency and favorable elastic modulus have made PEEK an attractive choice for interbody fusion devices, its poor osseointegrative properties prevent the formation of a strong union between implant and surrounding bone structures and remain a major liability. Recent advancements in PEEK surface technology have resulted in improved osseointegration; however, the identification of an ideal implant material has proven challenging. In this manuscript, we describe our preliminary investigation into the realm of PEEK-based fusion devices that has culminated in the discovery of a mild, solution-based process for the preparation of covalently surface modified PEEK biomaterials that display enhanced osteoconductive properties. Surface modification occurred under mild reaction conditions via the acid-mediated addition of various commercially available hydrophilic oxyamine and hydrazine nucleophiles to the diaryl ketone moiety of PEEK. The resulting modified surfaces have been confirmed by contact angle measurements and X-ray photoelectron spectroscopy (XPS). Subsequent in vitro studies demonstrated the enhanced capability of several modified PEEK variants to promote osteogenic differentiation and mineralized calcium deposition relative to unmodified PEEK surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.8b00274DOI Listing

Publication Analysis

Top Keywords

polyether ether
8
ether ketone
8
surface modification
8
fusion devices
8
modified peek
8
peek
7
osteoconductive enhancement
4
enhancement polyether
4
ketone mild
4
mild covalent
4

Similar Publications

A comparative analysis has been carried out between three different dental materials suitable for the prostheses manufacturing. The analysis performed is based on the finite elements method (FEM) and was made to evaluate their performance under three different loading conditions. Three different materials were modeled with 3D CAD geometry, all of them suitable to be simulated by means of a linear elastic model.

View Article and Find Full Text PDF

Background: Femoroacetabular impingement syndrome (FAIS) is frequently treated arthroscopically with osteoplasty and labral repair. Surgical preferences vary in terms of equipment, technique, and postoperative protocol. Patient-reported outcome measures (PROMs) are valuable tools to assess outcomes across different institutions.

View Article and Find Full Text PDF

Hemodialysis and bioartificial kidney (BAK), which mimic both physical and biological functions, can significantly impact chronic kidney disease (CKD) patients. Here we report on Hollow fiber membranes (HFMs) with enhanced separation of uremic toxins along with enhanced hemocompatibility and biocompatibility that also promote the growth of kidney cells. The improvement arises from the addition of titanium dioxide (0.

View Article and Find Full Text PDF

Ion bridging enables high-voltage polyether electrolytes for quasi-solid-state batteries.

Nat Commun

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.

Polyether electrolytes have been widely recognized for their favorable compatibility with lithium-metal, yet they are hampered by intrinsically low oxidation thresholds, limiting their potential for realizing high-energy Li-metal batteries. Here, we report a general approach involving the bridge joints between non-lithium metal ions and ethereal oxygen, which significantly enhances the oxidation stability of various polyether electrolyte systems. To demonstrate the feasibility of the ion-bridging strategy, a Zn ion-bridged polyether electrolyte (Zn-IBPE) with an extending electrochemical stability window of over 5 V is prepared, which enables good cyclability in 4.

View Article and Find Full Text PDF

Poor wear- and corrosion-resistance of 316L SS implants are critical problems in orthopedic implants. This study aims to improve the wear- and corrosion-resistance of 316L SS through surface coating. In this study, a bilayer composite coating consisting of polyether ether ketone (PEEK) as the first layer, and titania (TiO)- and Cu-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs) were deposited as the second layer on a 316L SS electrophoretic deposition (EPD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!