Novel cationic hyperbranched polymers were prepared from 2-aminoethyl methacrylate (AEMA) and di(ethylene glycol) methyl ether methacrylate (DEGMA) via the reversible addition-fragmentation chain transfer (RAFT) polymerization for siRNA delivery. Non-degradable and acid-degradable hyperbranched polymers were synthesized using ,'-methylenebis(acrylamide) (MBAm) and 2,2-dimethacroyloxy-1-ethoxypropane (DEP) cross-linkers, respectively. Both types of polymers were capable of forming very stable nanosized polyplexes with siRNA. Epidermal growth factor receptor (EGFR) silencing of 95% was achieved with the acid degradable cationic hyperbranched polymer, and no significant cytotoxicity was observed. Our results confirmed the high potency of using such hyperbranched polymers for the efficient protection and delivery of siRNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.8b00371 | DOI Listing |
Carbohydr Polym
March 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing, China. Electronic address:
Achieving effective interfacial compatibility between hydrophilic cellulose nanofibrils (CNFs) and hydrophobic vegetable oil polymers (VOPs) remained a significant challenge. To address this issue, we developed a one-component nanocomposite (OCN) based on hyperbranched CNF-grafted VOPs. Rigid precursor initiator poly (vinylbenzyl chloride) (PVBC) was first grafted onto the CNF surface via phase-transfer catalysis, forming a branched macroinitiator (CNF-g-PVBC) with chlorine contents ranging from 4.
View Article and Find Full Text PDFAdv Mater
January 2025
Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
Dynamic covalent polymer networks (DCPN) provide an important solution to the challenging recyclability of thermoset elastomers. However, dynamic bonds exhibit relatively weak bond energies, considerably decreasing the mechanical properties of DCPN. Herein, a novel reinforcement strategy for DCPN involving the in situ formation of supramolecular organic nanofillers through asynchronous polymerization is proposed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China. Electronic address:
Zein and its complexes have been considered as promising carriers for encapsulating and delivering various biological active ingredients, however, there still have some issues about Zein-based drug delivery systems should be considered, including poor colloidal stability, low drug encapsulation efficiency as well as rapid initial drug release, and uncontrollable release. In this work, we reported for the first time that hyperbranched polymers (HPG) functionalized Zein with terminal alkyne (Zein-HPG-PA) can be used for loading anticancer agent curcumin (CUR) via a facile phenol-yne click reaction. The resultant product (Zein-HPG-PA@CUR) displays high drug loading capacity, small particle size and excellent water dispersibility.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
Hyperbranched polymers (HBPs) have drawn great interest in the biomedical field on account of their special morphology, low viscosity, self-regulation, and facile preparation methods. Moreover, their large intramolecular cavities, high biocompatibility, biodegradability, and targeting properties render them very suitable for anti-tumor drug delivery. Recently, exploiting the specific characteristics of the tumor microenvironment, a range of multifunctional HBPs responsive to the tumor microenvironment have emerged.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!