AI Article Synopsis

Article Abstract

Background: Autoimmune endocrine diseases can be thought of as a case of mistaken identity. The immune system mistakenly attacks one's own cells, as if they were foreign, which typically results in endocrine gland hypofunction and inadequate hormone production. Type 1 diabetes mellitus and autoimmune thyroid disorders (Hashimoto and Graves diseases) are the most common autoimmune endocrine disorders, while conditions such as Addison disease are encountered less frequently. Autoantibody production can precede clinical presentation, and their measurement may aid verification of an autoimmune process and guide appropriate treatment modalities.

Content: In this review, we discuss type 1 diabetes mellitus, autoimmune thyroid disorders, and Addison disease, emphasizing their associated autoantibodies and methods for clinical detection. We will also discuss efforts to standardize measurement of autoantibodies.

Conclusions: Autoimmune endocrine disease progression may take months to years and detection of associated autoantibodies may precede clinical onset of disease. Although detection of autoantibodies is not necessary for diagnosis, they may be useful to verify an autoimmune process.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jalm/jfab128DOI Listing

Publication Analysis

Top Keywords

autoimmune endocrine
12
mistaken identity
8
endocrine disease
8
type diabetes
8
diabetes mellitus
8
mellitus autoimmune
8
autoimmune thyroid
8
thyroid disorders
8
addison disease
8
precede clinical
8

Similar Publications

Matching model with mechanism: Appropriate rodent models for studying various aspects of diabetes pathophysiology.

Methods Cell Biol

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom. Electronic address:

Many rodent models are available for preclinical diabetes research making it a challenge for researchers to choose the most appropriate one for their experimental question. To aid in this, models have classically been categorized according to which type of diabetes they represent, and further into whether the model is induced, spontaneous or the result of genetic manipulation. This fails to capture the complexity of pathogenesis seen in diabetes in humans.

View Article and Find Full Text PDF

Background: The Mediterranean diet (MedD) exerts anti-inflammatory and anti-oxidant effects that are beneficial in autoimmune thyroid diseases (ATD). Recently, a gluten-free diet (GFD) has been proposed for non-celiac patients with Hashimoto's thyroiditis (HT), but its usefulness is under debate. The present pilot study evaluates the effects of these two dietary regimes, with a focus on redox homeostasis, in HT.

View Article and Find Full Text PDF

Decoding the Contribution of IAPP Amyloid Aggregation to Beta Cell Dysfunction: A Systematic Review and Epistemic Meta-Analysis of Type 1 Diabetes.

Int J Mol Sci

January 2025

Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.

Diabetes Mellitus Type 1 (DM1) is an autoimmune disease characterized by the destruction of beta cells in the pancreas. Although amyloid formation has been well-studied in Diabetes Mellitus Type 2 (DM2), its role in DM1 remains unclear. Understanding how islet amyloid polypeptide (IAPP) contributes to beta cell dysfunction and death in DM1 could provide critical insights into disease mechanisms and pave the way for novel diagnostic and therapeutic strategies.

View Article and Find Full Text PDF

Autoimmune polyendocrine syndromes (APS) is a rare group of disorders caused by impaired function of multiple endocrine glands due to disruption of immune tolerance. Of which, type 2 (APS-2) is the most common. Glutamic acid decarboxylase (GAD) is the rate-limiting enzyme for the synthesis of gamma-aminobutyric acid (GABA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!