Uranium isotopes in groundwater in Ho Chi Minh City and related issues: Health risks, environmental effects, and mitigation methods.

J Contam Hydrol

Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, Viet Nam; Department of Nuclear Physics and Nuclear Engineering, Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam. Electronic address:

Published: February 2022

Groundwater is regularly used for many purposes, such as drinking and agricultural irrigation systems. Still, it contains high levels of radionuclides (e.g., U, Th, and Ra) that are potentially hazardous to humans and the environment. In this study, activity concentrations of uranium isotopes were analyzed in 15 groundwater samples taken from 15 bored wells in Thu Duc district, Ho Chi Minh City, Vietnam. Environmental effects of the irrigation system with groundwater on agricultural soil in the study area were assessed by models. It was found that the activity concentrations of U and U in groundwater samples were in the ranges of (13.5-268.7) mBq l and (20.2-438.3) mBq l, respectively. The ratio U/U values were ranged from 1.12 to 2, with an average value of 1.44. Based on the model prediction, 25 years irrigation with the groundwater can inject 94.8 Bq both uranium isotopes in 1 kg topsoil. For investigated groundwater samples, the proposed removal method using KFeO removed 74.28% and 81.04% for U and U, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2021.103941DOI Listing

Publication Analysis

Top Keywords

uranium isotopes
12
groundwater samples
12
chi minh
8
minh city
8
environmental effects
8
activity concentrations
8
groundwater
7
isotopes groundwater
4
groundwater chi
4
city issues
4

Similar Publications

Objective: assessment of probable exposure levels from radon and NORM in workplaces within the context of justi fying radiation protection plans in an existing exposure situation.

Materials And Methods: Materials regarding the assessment of naturally occurring radioactive material (NORM) con tent in tailing from mining and processing industries in Ukraine and assessments of contamination levels of industri al sites of oil and gas enterprises were used for estimating the probable range of effective doses (ED) of workers fromNORM at industrial enterprises. These materials were obtained as a result of research conducted by specialists from theRadiation Protection Laboratory of the State Institution «O.

View Article and Find Full Text PDF

This study investigated the potential association between uranium exposure and mortality from cerebrovascular diseases, with a focus on the mediating effects of lipid indicators. Employing recommended sampling weights to account for National Health and Nutrition Examination Survey' complex survey design, this analysis drew from data collected between 2005 and 2016. The study examined the impact of uranium on mortality from cerebrovascular diseases using various statistical approaches, including Cox regression to assess linear relationships within metal mixtures.

View Article and Find Full Text PDF

Trophic magnification rates of eighteen trace elements in freshwater food webs.

Sci Total Environ

December 2024

Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5C8, Canada. Electronic address:

Trace elements play diverse roles in animal physiology ranging from essential micronutrients to potent toxicants. Despite animals accumulating many trace elements through their diets, relationships between trophic positions and biological concentrations of most trace elements remain poorly described. We report trophic transfer rates of Al, As, Ba, Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sr, Ti, Tl, U, V, and Zn from 31 freshwaters located in distinct biogeographic regions.

View Article and Find Full Text PDF

Inhalation of aerosolized uranium is recognized as a principal mode of exposure, posing significant risks of damage to the lungs, kidneys, and other vital organs. To enhance nuclide elimination from the body, chelating agents are employed; however, single-component chelators often exhibit limited spectral activity and low effectiveness, resulting in toxicologically relevant concentrations. We have developed a composite chelating agent composed of 3,4,3-Li(1,2-HOPO), DFP, and HEDP in optimized ratios, demonstrating marked improvements in eliminating inhaled uranium.

View Article and Find Full Text PDF

Among all natural submicrosized phases, clay minerals are ubiquitous in soils and sedimentary rocks in nature as well as in engineered environments, and while clay minerals' adsorption properties have been studied extensively, their unique level of surface reactivity heterogeneities necessitates further investigation at the molecular level to understand and predict the influence of these heterogeneities on their macroscopic properties. In this study, we investigated the surface structures and desorption-free energies of U(VI) species (UO) and As(V) species (HAsO and HAsO) complexed at different edge surface reactive sites of a cis-vacant montmorillonite layer using first-principles molecular dynamics (FPMD). We show that U(VI) forms bidentate and tridentate complexes on montmorillonite edge surfaces, whereas As(V) monodentate complexes are the most stable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!