Crystal structure of the Cys-NO modified YopH tyrosine phosphatase.

Biochim Biophys Acta Proteins Proteom

Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil. Electronic address:

Published: March 2022

Protein tyrosine phosphatases (PTPs) are key virulence factors in pathogenic bacteria, consequently, they have become important targets for new approaches against these pathogens, especially in the fight against antibiotic resistance. Among these targets of interest YopH (Yersinia outer protein H) from virulent species of Yersinia is an example. PTPs can be reversibly inhibited by nitric oxide (NO) since the oxidative modification of cysteine residues may influence the protein structure and catalytic activity. We therefore investigated the effects of NO on the structure and enzymatic activity of Yersinia enterocolitica YopH in vitro. Through phosphatase activity assays, we observe that in the presence of NO YopH activity was inhibited by 50%, and that this oxidative modification is partially reversible in the presence of DTT. Furthermore, YopH S-nitrosylation was clearly confirmed by a biotin switch assay, high resolution mass spectrometry (MS) and X-ray crystallography approaches. The crystal structure confirmed the S-nitrosylation of the catalytic cysteine residue, Cys403, while the MS data provide evidence that Cys221 and Cys234 might also be modified by NO. Interestingly, circular dichroism spectroscopy shows that the S-nitrosylation affects secondary structure of wild type YopH, though to a lesser extent on the catalytic cysteine to serine YopH mutant. The data obtained demonstrate that S-nitrosylation inhibits the catalytic activity of YopH, with effects beyond the catalytic cysteine. These findings are helpful for designing effective YopH inhibitors and potential therapeutic strategies to fight this pathogen or others that use similar mechanisms to interfere in the signal transduction pathways of their hosts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2022.140754DOI Listing

Publication Analysis

Top Keywords

catalytic cysteine
12
yoph
9
crystal structure
8
oxidative modification
8
catalytic activity
8
catalytic
5
activity
5
structure cys-no
4
cys-no modified
4
modified yoph
4

Similar Publications

[FeFe] hydrogenases make up a structurally diverse family of metalloenzymes that catalyze proton/dihydrogen interconversion. They can be classified into phylogenetically distinct groups denoted A-G, which differ in structure and reactivity. Prototypical Group A hydrogenases have high turnover rates and remarkable energy efficiency.

View Article and Find Full Text PDF

Beyond directed evolution, ancestral sequence reconstruction (ASR) has emerged as a powerful strategy for engineering proteins with superior functional properties. Herein, we harnessed ASR to uncover robust PET hydrolase variants, expanding the repertoire of PET-degrading enzymes and providing deeper insights into the underlying mechanisms of PET hydrolysis. As a result, ASR1-PETase, featuring a unique cysteine catalytic site, was discovered.

View Article and Find Full Text PDF

Decoding ferroptosis in alcoholic hepatitis: A bioinformatics approach to hub gene identification.

Genomics

January 2025

Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Hangzhou Medical College, Linan District, Hangzhou 311300, China. Electronic address:

Background: Ferroptosis is associated with alcoholic hepatitis (AH); however, the underlying mechanisms remain unclear.

Methods: Changes in iron content and oxidative stress in AH patients and in vivo and in vitro models were analyzed. Iron homeostasis pathways in the livers of patients with AH were investigated using RNA sequencing.

View Article and Find Full Text PDF

Mitochondria derive the majority of their lipids from other organelles through contact sites. These lipids, primarily phosphoglycerolipids, are the main components of mitochondrial membranes. In the cell, neutral lipids like triacylglycerides (TAGs) are stored in lipid droplets, playing an important role in maintaining cellular health.

View Article and Find Full Text PDF

A Noncatalytic Cysteine Residue Modulates Cobalamin Reactivity in the Human B Processing Enzyme CblC.

Biochemistry

January 2025

Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany.

Human CblC catalyzes the indispensable processing of dietary vitamin B by the removal of its β-axial ligand and an either one- or two-electron reduction of its cobalt center to yield cob(II)alamin and cob(I)alamin, respectively. Human CblC possesses five cysteine residues of an unknown function. We hypothesized that Cys149, conserved in mammals, tunes the CblC reactivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!