The hypothalamic paraventricular nucleus as a central hub for the estrogenic modulation of neuroendocrine function and behavior.

Front Neuroendocrinol

Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy. Electronic address:

Published: April 2022

Estradiol and hypothalamic paraventricular nucleus (PVN) help coordinate reproduction with body physiology, growth and metabolism. PVN integrates hormonal and neural signals originating in the periphery, generating an output mediated both by its long-distance neuronal projections, and by a variety of neurohormones produced by its magnocellular and parvocellular neurosecretory cells. Here we review the cyto-and chemo-architecture, the connectivity and function of PVN and the sex-specific regulation exerted by estradiol on PVN neurons and on the expression of neurotransmitters, neuromodulators, neuropeptides and neurohormones in PVN. Classical and non-classical estrogen receptors (ERs) are expressed in neuronal afferents to PVN and in specific PVN interneurons, projecting neurons, neurosecretory neurons and glial cells that are involved in the input-output integration and coordination of neurohormonal signals. Indeed, PVN ERs are known to modulate body homeostatic processes such as autonomic functions, stress response, reproduction, and metabolic control. Finally, the functional implications of the estrogenic modulation of the PVN for body homeostasis are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yfrne.2021.100974DOI Listing

Publication Analysis

Top Keywords

pvn
9
hypothalamic paraventricular
8
paraventricular nucleus
8
estrogenic modulation
8
nucleus central
4
central hub
4
hub estrogenic
4
modulation neuroendocrine
4
neuroendocrine function
4
function behavior
4

Similar Publications

Repeated Amphetamine Exposure Blunted Angiotensin II-Induced Responses Mediated by AT Receptors.

Discov Med

January 2025

Department of Pharmacology "Otto Orsingher", Institute of Experimental Pharmacology of Córdoba (IFEC-CONICET), Faculty of Chemical Sciences, National University of Córdoba, X5000 Córdoba, Argentina.

Background: Angiotensin II, is critical in regulating the sympathetic and neuroendocrine systems through angiotensin II type 1 receptors (AT-R). Angiotensin II intracerebral administration increases water and sodium intake, as well as renal sodium excretion. Previously, our group has shown that AT-R is involved in behavioral and neurochemical sensitization induced by amphetamine.

View Article and Find Full Text PDF

The insular cortex (IC) processes various sensory information, including nociception, from the trigeminal region. Repetitive nociceptive inputs from the orofacial area induce plastic changes in the IC. Parvalbumin-immunopositive neurons (PVNs) project to excitatory neurons (pyramidal neurons [PNs]), whose inputs strongly suppress the activities of PNs.

View Article and Find Full Text PDF

Electroacupuncture effects on trigeminal neuralgia with comorbid anxiety and depression: The role of frequency and acupoint specificity.

FASEB J

January 2025

Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.

This study aimed to investigate the effects of electroacupuncture (EA) at specific acupoints (DU20 and ST36) and different frequencies (2 and 100 Hz) on brain regions associated with trigeminal neuralgia, anxiety, and depression. Chronic trigeminal neuralgia was induced by the chronic constriction of the infraorbital nerve (CION). Anxiety and depression were assessed through behavioral tests.

View Article and Find Full Text PDF

Background: Current multimodal neuroimaging plays a critical role in studying clinical conditions such as cardiovascular disease, major depression, and other disorders related to chronic stress. These conditions involve the brainstem-hypothalamic network, specifically the locus coeruleus (LC), dorsal vagal complex (DVC), and paraventricular nucleus (PVN) of the hypothalamus, collectively referred to as the "DVC-LC-PVN circuitry." This circuitry is strongly associated with the norepinephrine (NE) and epinephrine (E) neurotransmitter systems, which are implicated in the regulation of key autonomic functions, such as cardiovascular and respiratory control, stress response, and cognitive and emotional behaviors.

View Article and Find Full Text PDF

Background: Constipation is one of the most common non-motor symptoms in patients with Parkinson's disease (PD), which could manifest during the early stage of the disease. However, the etiology of constipation in PD remains largely unknown. Previous studies supported that gastrointestinal dysfunction may be associated with functional connectivity alterations in paraventricular hypothalamic nucleus (PVN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!