Assessment of phosphorus loading dynamics in a tropical reservoir with high seasonal water level changes.

Sci Total Environ

Water Resources Company of the State of Ceará COGERH, Rua Adualdo Batista, 1550, 60.824.140 Fortaleza, Brazil. Electronic address:

Published: April 2022

Nutrient accumulation in man-made reservoirs has been documented worldwide. Therefore, quantifying phosphorus loading and understanding its temporal dynamics in reservoirs is mandatory for sustainable water management. In this study, the Vollenweider's complete-mix phosphorus budget model was adapted to account for high water level variations, which are a common feature in tropical reservoirs, and for internal phosphorus loads. First- and zero-order kinetics were adopted to simulate phosphorus settling and release from the sediment layer, respectively, considering variable area of phosphorus release according to the height of the anoxic layer. The modeling approach was applied for a 52-months period to a 31-years-old reservoir located in the semiarid region of Brazil with 7.7 hm storage capacity. The simulations were supported by hydrological, meteorological and water quality data, as well as analyses of phosphorus partitioning of the reservoir bed sediment. The external phosphorus load was estimated from a relationship adjusted between inflow and phosphorus concentration, revealing an u-shaped pattern. Sedimentary phosphorus linked to iron and aluminum (P) increased over time and along the reservoir. Such measurements were used to estimate the internal phosphorus load, i.e., the yield from the bed sediments to the water column. The adaptations proposed to the model's structure improved its capacity to simulate phosphorus concentration in the water column, from "not satisfactory" to "good". We estimate that the internal phosphorus load currently accounts for 44% of the total load. It prevailed during the wet period, when reservoir stratification and hypolimnetic hypoxia were more notable, resulting in higher phosphorus concentration in the water column due to the combined effects of internal and external loadings. However, if the reservoir were 70 years older, the internal load would reach 83% of the total and the reservoir would become a source instead of a sink of phosphorus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.152875DOI Listing

Publication Analysis

Top Keywords

phosphorus
14
internal phosphorus
12
phosphorus load
12
phosphorus concentration
12
water column
12
phosphorus loading
8
water level
8
simulate phosphorus
8
estimate internal
8
concentration water
8

Similar Publications

A Study of the Different Strains of the Genus spp. on Increasing Productivity and Stress Resilience in Plants.

Plants (Basel)

January 2025

National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China.

One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions.

View Article and Find Full Text PDF

Impact of Polystyrene Microplastics on Soil Properties, Microbial Diversity and L. Growth in Meadow Soils.

Plants (Basel)

January 2025

Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, China.

The pervasive presence of microplastics (MPs) in agroecosystems poses a significant threat to soil health and plant growth. This study investigates the effects of varying concentrations and sizes of polystyrene microplastics (PS-MPs) on the L.'s height, dry weight, antioxidant enzyme activities, soil physicochemical properties, and rhizosphere microbial communities.

View Article and Find Full Text PDF

The incorporation of rice straw (RS) and Chinese milk vetch (CMV) with reduced chemical fertilizers (CFs) is a viable solution to reduce the dependency on CF. However, limited research has been conducted to investigate the impact of CMV and RS with reduced CF on rice production. A field trial was conducted from 2018 to 2021 with six treatments: CK (no fertilizer), F100 (100% NPK fertilizer (CF)), MSF100 (100% CF+CMV and RS incorporation), MSF80 (80% CF+CMV+RS), MSF60 (60% CF+CMV+RS), and MSF40 (40% CF+CMV+RS).

View Article and Find Full Text PDF

Application of Biochar-Immobilized for Enhancing Phosphorus Uptake and Growth in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.

Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of .

View Article and Find Full Text PDF

Phosphorus Fertilization and Chemical Root Pruning: Effects on Root Traits During the Nursery Stage in Two Mediterranean Species from Central Chile.

Plants (Basel)

January 2025

Escuela de Ingeniería en Agronomía, Campus Tecnológico Local San Carlos, Tecnológico de Costa Rica, Alajuela 22321001, Costa Rica.

The role of a plant root system in resource acquisition is relevant to confront drought events caused by climate change. Accordingly, nursery practices like phosphorous (P) fertilization and root pruning have been shown to modify root architecture; however, their combined benefits require further investigation in Mediterranean species. We evaluated the effect of applied P concentrations (0, 15, 60, and 120 mg L P) with or without chemical (copper) root pruning (WCu, WoCu, respectively) in and on morpho-physiological and root architecture traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!