Near-Field Electrospinning: Crucial Parameters, Challenges, and Applications.

ACS Appl Bio Mater

Department of Biomaterials & Tissue Engineering, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran.

Published: February 2022

Near-field electrospinning (NFES) is a micro- or nanofiber production technology based on jetting molten polymer or polymer solution. Thanks to the programmable collector and nozzle movement, it can generate designed patterns in the presence of an electric field. Despite a few shortcomings of NFES, its high resolution, simplicity, precision, high throughput, reproducibility, and low costs have convinced researchers to employ it for various purposes. Furthermore, as the paradigm of fiber-based structures shifts from random textures toward delicate designs, NFES can bridge the gap between existing inefficient processes and aspired technologies for precise patterning. NFES facilitates the production of ultrafine nanofibers because it can be used to fabricate them in every laboratory. These robust fibers are convenient tools for small and additive manufacturing. As such, NFES is considered a potent additive fabrication technology that facilitates the production of complicated patterns as well. It is suggested that near-field electrospun fibers exhibit outstanding results in various applications, owing to their precise and controllable positioning. Meanwhile, the ongoing development of NFES has yet to reach its climax, making it attractive for further research. In this review, the basic principles of NFES, derivatives, limitations, and applications in nanomanufacturing, tissue engineering, microscale electronics, biosensors, and optics are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.1c00944DOI Listing

Publication Analysis

Top Keywords

near-field electrospinning
8
facilitates production
8
nfes
7
electrospinning crucial
4
crucial parameters
4
parameters challenges
4
challenges applications
4
applications near-field
4
electrospinning nfes
4
nfes micro-
4

Similar Publications

Near-Field Direct Writing Based on Piezoelectric Micromotion for the Programmable Manufacturing of Serpentine Structures.

Micromachines (Basel)

December 2024

Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou 510006, China.

Serpentine microstructures offer excellent physical properties, making them highly promising in applications in stretchable electronics and tissue engineering. However, existing fabrication methods, such as electrospinning and lithography, face significant challenges in producing microscale serpentine structures that are cost-effective, efficient, and controllable. These methods often struggle with achieving precise control over fiber morphology and scalability.

View Article and Find Full Text PDF

Near-Field Direct Write Electrospinning of PET-Carbon Quantum Dot Solutions.

Materials (Basel)

December 2024

Materials Science and Engineering Group, Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark.

Electrospinning of polymer material has gained a lot of interest in the past decades. Various methods of electrospinning have been applied for different applications, from needle electrospinning to needleless electrospinning. A relatively new variation of electrospinning, namely near-field electrospinning, has been used to generate well-defined patterns.

View Article and Find Full Text PDF

Scaffolds are of great interest in tissue engineering associated with regenerative medicine owing to their ability to mimic biological structures and provide support for new tissue formation. Several techniques are used to produce biological scaffolds; among them, far-field electrospinning (FFES) process is widely used due to its versatility in producing promising structures similar to native tissues owing to the electrospun nanofibers. On the other hand, near-field electrospinning (NFES) has been investigated due to the possibility of creating scaffolds with suitable architecture for their use in specific biological tissues.

View Article and Find Full Text PDF

Gelatin-alginate hydrogel for near-field electrospinning assisted 3D and 4-axis bioprinting.

Carbohydr Polym

January 2025

Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea. Electronic address:

A near-field electrospinnable and three-dimensional (3D) bioprintable gelatin-alginate hydrogel was synthesized by controlling a moderate amount of alginate and a limited amount of crosslinker, tannic acid. This cytocompatible gelatin-alginate tough hydrogel exhibited excellent shape fidelity, a self-standing height exceeding 20 mm, and the capability for multilayer and four-axis 3D printing of complex scaffold shapes. The control of gel strength and rheology enables this hydrogel for successful stretching extrusion under an electric field in near-field electrospinning-induced 3D printing and four-axis printing.

View Article and Find Full Text PDF

This study fabricated piezoelectric fibers of polyvinylidene fluoride (PVDF) with graphene using near-field electrospinning (NFES) technology. A uniform experimental design table U*774 was applied, considering weight percentage (1-13 wt%), the distance between needle and disk collector (2.1-3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!