A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfpf2hh7fa1q7b9hkupib9g8sp2e65bp9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Combined application of zinc and iron-lysine and its effects on morpho-physiological traits, antioxidant capacity and chromium uptake in rapeseed (Brassica napus L.). | LitMetric

AI Article Synopsis

  • Environmental contamination from chromium (Cr) is a global concern, particularly due to its high levels in water and soil, affecting plant growth.
  • A pot experiment using rapeseed showed that higher concentrations of tannery wastewater led to significant declines in plant height, leaf number, and root growth, alongside reduced levels of chlorophyll and antioxidants.
  • However, applying zinc and iron-lysine chelates helped reduce Cr uptake while increasing essential nutrient absorption, indicating a promising method to alleviate metal stress in crops.

Article Abstract

Environmental contamination of chromium (Cr) has gained substantial consideration worldwide because of its high levels in the water and soil. A pot experiment using oil seed crop (rapeseed (Brassica napus L.)) grown under different levels of tannery wastewater (0, 33, 66 and 100%) in the soil using the foliar application of zinc (Zn) and iron (Fe)-lysine (lys) has been conducted. Results revealed that a considerable decline in the plant growth and biomass elevates with the addition of concentrations of tannery wastewater. Maximum decline in plant height, number of leaves, root length, fresh and dry biomass of root and leaves were recorded at the maximum level of tannery wastewater application (100%) compared to the plants grown without the addition of tannery wastewater (0%) in the soil. Similarly, contents of carotenoid and chlorophyll, gas exchange parameters and activities of various antioxidants (superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)) were also reduced significantly (P < 0.05) with the increasing concentration of tannery wastewater (33, 66 and 100%) in the soil. In addition, a combined application of Zn and Fe-lys reduced the accumulation and uptake of toxic Cr, while boosting the uptake of essential micronutrients such as Zn and Fe in different tissues of the plants. Results concluded that exogenous application of micronutrients chelated with amino acid successfully mitigate Cr stress in B. napus. Under field conditions, supplementation with these micronutrient-chelated amino acids may be an effective method for alleviating metal stress in other essential seed crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740971PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262140PLOS

Publication Analysis

Top Keywords

tannery wastewater
20
combined application
8
application zinc
8
rapeseed brassica
8
brassica napus
8
wastewater 100%
8
100% soil
8
decline plant
8
tannery
5
wastewater
5

Similar Publications

The environmental burden of tannery wastewater, characterized by high levels of total dissolved solids (TDS) and other contaminants, presents a significant challenge for sustainable water management. This study addresses this issue by developing a novel polyvinyl alcohol (PVA) and polyvinyl chloride (PVC) composite membrane optimized for efficient TDS removal from tannery effluent. The membrane was fabricated using a solution casting technique, with glutaraldehyde employed as a crosslinking agent to enhance mechanical properties and stability.

View Article and Find Full Text PDF

Nanoscale particles-induced mitigation of tannery wastewater chromium stress in rice: Implications for plant performance and human health risk assessment.

Environ Pollut

December 2024

School of Public Administration, Hohai University, Nanjing, 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing, 210009, China. Electronic address:

Due to the rapid increase in industrial and urban areas, environmental pollution is increasing worldwide, which is causing unwanted changes in air, water, and soil at biological, physical, as well as chemical levels that ultimately causing the negative effects in living things because of toxic level of chromium (Cr). However, nanotechnology is capturing great interest worldwide due to their stirring applications in various fields. For this purpose, a pot experiment was conducted to examine plant growth and exo-physiology in rice (Oryza sativa L.

View Article and Find Full Text PDF

A prime technique for paused bacterial degeneration in hide/skin is preservation. The most used and familiar technique for preservation is salt curing. In this research, biowaste (sawdust) is used with a lower salt percentage to preserve goatskin.

View Article and Find Full Text PDF

Desalination ensures the provision of potable water to those living in coastal areas, thereby guaranteeing access to safe drinking water. Urbanization and industrialization pollute natural water sources with untreated and partially treated wastewater. International researchers have been searching for cost-effective and environmentally friendly solutions to the above-highlighted difficulties.

View Article and Find Full Text PDF

Hexavalent chromium (Cr(VI)) has emerged as a contaminant of heavy metal, owing to its wide use in industry. This study focuses on elucidating the interaction between microbial communities and environmental parameters in Cr(VI)-contaminated groundwater near a factory in Henan Province, and evaluating the bio-remediation potential of microorganisms toward Cr(VI) reduction. The highest concentration of Cr(VI) in the groundwater is 208.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!