The objective of this paper is to evaluate the accuracy of the NASA BioSentinel Pixel Dosimeter (BPD) using gamma-ray and neutron sources in a standard calibration lab. The dosimeter tested here is the ground-based version of the BPD that will be onboard the BioSentinel mission. The BPD was exposed to radiation from 60Co, 137Cs, and 252Cf at selected distances (dose rates) at the Lawrence Livermore National Laboratory (LLNL) Radiation Calibration Laboratory (RCL), and the results were compared with NIST traceable benchmark values. It is recognized that these sources are not analogs for the space environment but do provide direct comparisons between BPD response and well characterized calibration lab values. For gamma rays, the BPD measured absorbed dose agrees to ≤ 3.8% compared with RCL benchmark values. For neutrons, the results show that the BPD is insensitive, i.e., the BPD detected only the gamma-ray dose component from 252Cf. The LET spectra obtained for gamma rays from 60Co and 252Cf are consistent with expectations for these gamma-ray energies, but the LET spectrum from the 137Cs gamma rays differs substantially. The potential causes for this difference are the high dose rate from 137Cs and the lower secondary electron energy produced by 137Cs gamma rays. However, neither of these results in errors in the absorbed dose. Based on comparisons with NIST-traceable standards, it is evident that the BPD can measure absorbed dose accurately from low LET charged particles. The sensor's insensitivity to neutrons is unlikely to be a limitation for the BioSentinel mission due to the expected low secondary neutron fluence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8843361PMC
http://dx.doi.org/10.1097/HP.0000000000001502DOI Listing

Publication Analysis

Top Keywords

gamma rays
16
calibration lab
12
absorbed dose
12
nasa biosentinel
8
biosentinel pixel
8
pixel dosimeter
8
gamma-ray neutron
8
neutron sources
8
bpd
8
biosentinel mission
8

Similar Publications

This paper explores the adaptation and application of i-TED Compton imagers for real-time dosimetry in Boron Neutron Capture Therapy (BNCT). The i-TED array, previously utilized in nuclear astrophysics experiments at CERN, is being optimized for detecting and imaging 478 keV gamma-rays, critical for accurate BNCT dosimetry. Detailed Monte Carlo simulations were used to optimize the i-TED detector configuration and enhance its performance in the challenging radiation environment typical of BNCT.

View Article and Find Full Text PDF

The tolerance and degradation characteristics of a marine oil-degrading strain Acinetobacter sp. Y9 were investigated in the presence of diesel oil and simulated radioactive nuclides (Mn, Co, Ni, Sr, Cs) at varying concentrations, as well as exposure to γ-ray radiation (Co-60). The maximum tolerable concentrations for Coand Ni were found to be 5 mg/l and 25 mg/l, respectively, while the tolerable concentrations for Mn, Sr, and Cs exceeded 400 mg/l, 1000 mg/l, and 1000 mg/l, respectively.

View Article and Find Full Text PDF

Hepatic encephalopathy (HE) is a syndrome that arises from acute or chronic liver failure. This study was devised to assess the impact of a combination of boswellic acid (BA) and low doses of gamma radiation (LDR) on thioacetamide (TAA)-induced HE in an animal model. The effect of daily BA treatment (175 mg/kg body weight, for four weeks) and/or fractionated low-dose γ-radiation (LDR; 0.

View Article and Find Full Text PDF

Background: One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens.

View Article and Find Full Text PDF

Radiation therapy is one of the most effective treatments for approximately 60% of patients with cancer. During radiation exposure, the overproduction of reactive oxygen species (ROS) disrupts the lipid layer of the membrane, leading to subsequent peroxide radical formation. Cimetidine (Cim) and famotidine (Fam) are histamine H2 receptor antagonists (H2 blocker), also known as peptic ulcer drugs, that exert radioprotective effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!