The RNA-binding protein EWS is a multifunctional protein with roles in the regulation of transcription and RNA splicing. It is one of the FET (FUS, EWS and TAF15) family of RNA binding proteins that contain an intrinsically disordered, low-complexity N-terminal domain. The FET family proteins are prone to chromosomal translocations, often fusing their low-complexity domain with a transcription factor derived DNA-binding domain, that are oncogenic drivers in several leukemias and sarcomas. The fusion protein disrupts the normal function of cells through non-canonical DNA binding and alteration of normal transcriptional programs. However, the exact mechanism for how the intrinsically disordered domain contributes to aberrant DNA binding and abnormal transcription is unknown. The purification and H, C, and N backbone resonance assignments of the amino terminal domain comprising 264 residues of EWS is described. This segment is common to all known EWS-fusions that are the hallmark of the pediatric cancer Ewing sarcoma. This domain is intrinsically disordered and features significant sequence degeneracy resulting in spectra with poor chemical shift dispersion. To alleviate this problem, the domain was divided into three overlapping fragments, reducing the complexity of the spectra and enabling almost complete backbone resonance assignment of the full domain. These solution NMR chemical shift assignments represent the first steps towards understanding, at atomic resolution, how the low-complexity domain of EWS contributes to the aberrant functions of its oncogenic fusion proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081151PMC
http://dx.doi.org/10.1007/s12104-021-10061-4DOI Listing

Publication Analysis

Top Keywords

low-complexity domain
12
intrinsically disordered
12
domain
10
resonance assignments
8
domain oncogenic
8
oncogenic fusion
8
fusion protein
8
dna binding
8
contributes aberrant
8
backbone resonance
8

Similar Publications

Background: Automatic classification of arrhythmias based on electrocardiography (ECG) data faces several significant challenges, particularly due to the substantial volume of clinical data involved in ECG signal analysis. The volume of clinical data has increased considerably, especially with the emergence of new clinical symptoms and signs in various arrhythmia conditions. These symptoms and signs, which serve as distinguishing features, can number in the tens of thousands.

View Article and Find Full Text PDF

Structural plasticity of the coiled-coil interactions in human SFPQ.

Nucleic Acids Res

December 2024

School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.

The proteins SFPQ (splicing Factor Proline/Glutamine rich) and NONO (non-POU domain-containing octamer-binding protein) are mammalian members of the Drosophila Behaviour/Human Splicing (DBHS) protein family, which share 76% sequence identity in their conserved 320 amino acid DBHS domain. SFPQ and NONO are involved in all steps of post-transcriptional regulation and are primarily located in mammalian paraspeckles: liquid phase-separated, ribonucleoprotein sub-nuclear bodies templated by NEAT1 long non-coding RNA. A combination of structured and low-complexity regions provide polyvalent interaction interfaces that facilitate homo- and heterodimerisation, polymerisation, interactions with oligonucleotides, mRNA, long non-coding RNA, and liquid phase-separation, all of which have been implicated in cellular homeostasis and neurological diseases including neuroblastoma.

View Article and Find Full Text PDF

Decoding the biogenesis of HIV-induced CPSF6 puncta and their fusion with the nuclear speckle.

bioRxiv

December 2024

Institut Pasteur, Advanced Molecular Virology Unit, Department of Virology, Université Paris Cité, 75015 Paris, France.

Viruses rely on host cellular machinery for replication. After entering the nucleus, the HIV genome accumulates in nuclear niches where it undergoes reverse transcription and integrates into neighboring chromatin, promoting high transcription rates and new virus progeny. Despite anti-retroviral treatment, viral genomes can persist in these nuclear niches and reactivate if treatment is interrupted, likely contributing to the formation of viral reservoirs.

View Article and Find Full Text PDF

Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay.

View Article and Find Full Text PDF

Trypanosoma cruzi RNA-binding protein DRBD3: perinuclear foci formation during benznidazole exposure.

An Acad Bras Cienc

November 2024

Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil.

Benznidazole (BZ) is the trypanocidal compound of choice for Chagas disease, a neglected tropical disease in the Americas. However, this drug often fails to cure the infection. The regulation of gene expression in Trypanosoma cruzi, the causative agent of Chagas disease, is based on post-transcriptional mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!