At the end of World War II, the Japanese abandoned arsenic (As)-containing chemical weapons (CWs) in China. During the long-term burial process, the As-containing agents leaked into the environment due to the corrosion of weapon shells. This study explored the surface distribution, fraction composition, and bioaccessibility of As in the soil contaminated by chemical weapons in a site of Jilin Province, China. Results showed that As was enriched in the soil of CWs buried and the maximum concentration of As in this area was 110 mg/kg (dry weight). In terms of fraction, As primarily accumulated in amorphous Fe/Al-oxides bound and residual fractions. Moreover, from the perspective of fractions with potential environmental risks, As accounted for 45.6-82.0% and 61.0-80.7% of the fractions extracted by Wenzel and Shiowatana sequential extraction procedure (SEP), respectively. Bioaccessibility can also be used to assess environmental risks. The mean values of As bioaccessibility were as follows: gastric phase (15.0%) > colon phase (14.8%) > small intestinal phase (13.3%), and the As bioaccessibility was closely related to the Fe/Al oxide bound fraction. Compared with the surrounding farmland, the potential environmental risk of soil pollution was more significant in the CW burial areas. This study provided support for remediation of As-containing agent-contaminated soil in China.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-18482-3 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.
Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.
View Article and Find Full Text PDFMicroorganisms
December 2024
Targeted Therapy Team, Institute for Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions.
View Article and Find Full Text PDFThe sulfur-containing chemical warfare agents sulfur mustard HD and nerve agent VX are highly toxic and persistent in the environment. Therefore, their neutralisation requires harsh oxidation conditions, but also precise selectivity. Here we report the safe and effective detoxification of surrogates CEES and PhX by selective oxidation of the sulfur atom by generating peracetic acid from AcOEt and aq.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Microbiology and Immunology Department, Faculty of Medicine, Sohag University, Sohag, Egypt.
Background: The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy.
View Article and Find Full Text PDFArch Insect Biochem Physiol
December 2024
Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China.
The plant defense against insects is multiple layers of interactions. They defend through direct defense and indirect defense. Direct defenses include both physical and chemical barriers that hinder insect growth, development, and reproduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!