Strong coupling provides a powerful way to modify the nonlinear optical properties of materials. The coupling strength of the state-of-the-art strongly coupled systems is restricted by a weak-field confinement of the cavity, which limits the enhancement of the optical nonlinearity. Here, we investigate a strong coupling between Mie resonant modes of high-index dielectric nanocavities and an epsilon-near-zero mode of an ultrathin indium tin oxide film and obtain an anticrossing splitting of 220 meV. Static nonlinear optical measurements reveal a large enhancement in the intensity-independent effective optical nonlinear coefficients, reaching more than 3 orders of magnitude at the coupled resonance. In addition, we observe a transient response of ∼300 fs for the coupled system. The ultrafast and large optical nonlinear coefficients presented here offer a new route towards strong coupling-assisted high-speed photonics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.1c03876 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!