Uncontrollable stress is linked to the development of many diseases, some of which are associated with disrupted daily rhythms in physiology and behavior. While available data indicate that the master circadian pacemaker in the suprachiasmatic nucleus (SCN) is unaffected by stress, accumulating evidence suggest that circadian oscillators in peripheral tissues and organs can be shifted by a variety of stressors and stress hormones. In the present study, we examined effects of acute and chronic social defeat stress in mice and addressed the question of whether effects of uncontrollable stress on peripheral clocks are tissue specific and depend on time of day of stress exposure. We used mice that carry a luciferase reporter gene fused to the circadian clock gene Period2 (PER2::LUC) to examine daily rhythms of PER2 expression in various peripheral tissues. Mice were exposed to social defeat stress in the early (ZT13-14) or late (ZT21-22) dark phase, either once (acute stress) or repeatedly on 10 consecutive days (chronic stress). One hour after the last stressor, tissue samples from liver, lung, kidney, and white adipose tissue (WAT) were collected. Social defeat stress caused a phase delay of several hours in the rhythm of PER2 expression in lung and kidney, but this delay was stronger after chronic than after acute stress. Moreover, shifts only occurred after stress in the late dark phase, not in the early dark phase. PER2 rhythms in liver and WAT were not significantly shifted by social defeat, suggesting a different response of various peripheral clocks to stress. This study indicates that uncontrollable social defeat stress is capable of shifting peripheral clocks in a time of day dependent and tissue specific manner. These shifts in peripheral clocks were smaller or absent after a single stress exposure and may therefore be the consequence of a cumulative chronic stress effect.

Download full-text PDF

Source
http://dx.doi.org/10.1177/07487304211065336DOI Listing

Publication Analysis

Top Keywords

social defeat
24
defeat stress
20
stress
17
peripheral clocks
16
dark phase
12
chronic social
8
stress shifts
8
shifts peripheral
8
uncontrollable stress
8
daily rhythms
8

Similar Publications

Depression is presented as a multi-factorial bio-psycho-social expression that has evolved primarily as an effect of stressors related to the motivational/emotional systems that regulate the in our relationship with conspecifics. These stressors may be caused by two sources of threat, firstly, the loss of bonding with the caregiver and later with a partner and/or group which relates to the SEPARATION (PANIC/GRIEF) system, secondly, social defeat as an expression of the social competition and social dominance. The sexual maturity drives the individual to social competition and social dominance, even if the latter often occurs before sexual maturity, e.

View Article and Find Full Text PDF

Early postnatal NMDA receptor ablation in cortical interneurons impairs affective state discrimination and social functioning.

Neuropsychopharmacology

January 2025

Grupo de Neurociencia de Sistemas, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina.

Emotion recognition is fundamental for effective social interactions among conspecifics. Impairments in affective state processing underlie several neuropsychiatric disorders, including schizophrenia, although the neurobiological substrate of these deficits remains unknown. We investigated the impact of early NMDA receptor hypofunction on socio-affective behaviors.

View Article and Find Full Text PDF

Effect of antidepressants and social defeat stress on the activity of dorsal raphe serotonin neurons in free-moving animals.

J Pharmacol Sci

February 2025

Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Japan; Project for Neural Networks, Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871, Japan. Electronic address:

Major depressive disorder (MDD) is among the most common mental disorders worldwide and is characterized by dysregulated reward processing associated with anhedonia. Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for MDD; however, their onset of action is delayed. Recent reports have shown that serotonin neurons in the dorsal raphe nucleus (DRN) are activated by rewards and play a vital role in reward processing.

View Article and Find Full Text PDF

Objective: Epothilone D (EpoD), microtubule (MT) stabilizing agent, demonstrated promising results in the animal models of Alzheimer's disease, Parkinson's disease and schizophrenia. The present study sought to investigate preventive effects of EpoD on altered changes of MT related proteins and endoplasmic reticulum (ER) stress proteins induced by social defeat stress (SDS).

Methods: We measured protein expression levels of α-tubulin and its post-translational modifications, MT-associated protein 2, stathmin1 and 2 with their phosphorylated forms, and ER stress markers, 78-kDa glucose-regulated protein (GRP-78) and CCAAT/enhancer binding protein (C/EBP)-homologous protein (CHOP) in the prefrontal cortex (PFC) and hippocampus (HIP) of C57BL/6J strain mice treated with EpoD (2 mg/kg) or its vehicle, dimethylsulfoxide (DMSO), and exposed to SDS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!