To reveal the rationality of compatibility of Salviae Miltiorrhizae Radix et Rhizoma(SMRR) and Puerariae Lobatae Radix(PLR) from the perspective of pharmacokinetics, this study established a UPLC-MS/MS method for quantitative determination of PLR flavonoids(3'-hydroxy puerarin, puerarin, puerarin 6″-O-xyloside, 3'-methoxy puerarin, puerarin apioside) and salvianolic acids and tanshinones(salvianolic acid B, cryptotanshinone, and tanshinone Ⅱ_A) in plasma of rats. Rats were given SMRR extract, PLR extract, and SMRR-PLR extract by gavage and then plasma was collected at different time. UPLC separation was performed under the following conditions: Eclipse C_(18) column(2.1 mm×50 mm, 1.8 μm), 0.1% formic acid in water(A)-0.1% formic acid in acetonitrile(B) as mobile phase for gradient elution. Conditions for MS are as below: multiple reaction monitoring(MRM), ESI~(+/-). Comprehensive validation of the UPLC-MS/MS method(specifically, from the aspects of calibration curve, precision, accuracy, repeatability, stability, matrix effect, extract recovery) was performed and the result demonstrated that it complied with quantitative analysis requirements for biological samples. Compared with SMRR extract alone or PLR extract alone, SMRR-PLR extract significantly increased the AUC and C_(max) of PLR flavonoids and tanshinones in rat plasma, suggesting that the combination of SMRR and PLR promoted the absorption of the above components. The underlying mechanism needs to be further studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19540/j.cnki.cjcmm.20210506.201 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
Traditional Chinese Medicine (TCM) is recognized for its complex composition and multiple therapeutic targets. However, current pharmacological research often concentrates on extracts or individual components. The former approach faces numerous challenges, whereas the latter oversimplifies and disregards the synergistic effects among TCM components.
View Article and Find Full Text PDFBiol Pharm Bull
January 2025
Department of Natural products, National Institute of Pharmaceutical Education and Research (NIPER).
Puerarin (PU), a bioactive constituent reported to possess therapeutic effectiveness, but it suffers a drawback of poor bioavailability. In the present study, the PU nanoparticles (PU-NPs) were prepared using solvent-diffusion-evaporation method and optimized using Box-Behnken design (BBD), a response surface methodology for obtaining the optimal material ratio of PU-NPs. Further, PU and PU-NPs were evaluated to assess their cytotoxic effect and in vitro efficiency of inflammatory responses using lipopolysaccharide-sensitive macrophage cell line (RAW264.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China. Electronic address:
Sci Rep
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.
The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
Recent studies have highlighted the role of the gut microbiota in type 2 diabetes (T2D). Improving gut microbiota dysbiosis can be a potential strategy for the prevention and management of T2D. Here, this work finds that the abundance of Barnesiella intestinihominis is significantly decreased in the fecal of T2D patients from 2-independent centers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!