Alginate lyases are epitomized as prospective therapeutic mediators for treating Pseudomonas aeruginosa infections, particularly in the cystic fibrosis airway through alginate degradation thereby improving the efficacy of anti-pseudomonal antibiotics. Investigation of metal-binding residues is significant for expounding the ion specificity of an enzyme and will provide a broad understanding of the potential roles of metal ions in enzyme function and stability. However, experimental analysis of metal ion-binding sites in proteins is time consuming and expensive. Concerning the clinical importance of this therapeutic enzyme, the present study was focused on the prediction and characterization of metal ion-binding sites of different alginate lyases reported in the literature through a computational approach using a Metal Ion-Binding Site Prediction and Docking Server. 3D structures of different alginate lyase from different organisms were retrieved, and these retrieved proteins were docked with twelve different metal ions such as Ca, Cu, Fe, Mg, Mn, Zn, Cd, Fe, Ni, Hg, Co, and Cu. The binding affinity and interacting amino acids for alginate lyases produced by different microorganisms were compared and analysed. Further analysis on active site residues of reported alginate lyase and subsequent experiments will reveal the function of different metal ions in enhancing or inhibiting the catalysis of alginate lyase and will help in exploiting the enzyme as an efficient therapeutic agent as well as for industrial applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-021-03746-y | DOI Listing |
J Agric Food Chem
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing 100083, China.
An alginate lyase (FsAly7) from sp. was engineered by directed evolution to improve its optimum temperature and thermostability. The optimum temperature of the positive mutant mFsAly7 (FsAly7-Ser43Pro) was increased by 5 °C, and the thermal inactivation half-lives at 40 and 45 °C were 4.
View Article and Find Full Text PDFFront Microbiol
December 2024
Key Laboratory of Agro-Products Processing Technology of Shandong Province, Key Laboratory of Novel Food Resources Processing Ministry of Agriculture, Institute of Food & Nutrition Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.
Alginate lyases can fully degrade alginate into various size-defined unsaturated oligosaccharide products by -elimination. Here, we identified the bifunctional endolytic alginate lyase Aly35 from the marine bacterium sp. Strain H204.
View Article and Find Full Text PDFMar Drugs
December 2024
Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264000, China.
Marine bacteria are crucial sources of alginate lyases, which play an essential role in alginate oligosaccharide (AOS) production. This study reports the biochemical characteristics of a new species of the genus, sp. HZ11.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt.
Bacterial biofilms pose significant challenges, from healthcare-associated infections to biofouling in industrial systems, resulting in significant health impacts and financial losses globally. Classic antimicrobial methods often fail to eradicate sessile microbial communities within biofilms, requiring innovative approaches. This review explores the structure, formation, and role of biofilms, highlighting the critical importance of exopolysaccharides in biofilm stability and resistance mechanisms.
View Article and Find Full Text PDFMolecules
November 2024
Enzyme Science Programme (ESP), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6140, South Africa.
Alginate, a polysaccharide found in brown seaweeds, has regularly gained attention for its potential use as a source of bioactive compounds. However, it is structurally complex with a high molecular weight, limiting its application. Alginate oligosaccharides (AOS) are small, soluble fragments, making them more bioavailable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!