Use of diffusive gradients in thin films (DGT) to measure potentially bioavailable metals in southeastern USA blackwater streams.

Environ Monit Assess

Department of Biology and Geology, University of South Carolina at Aiken, 471 University Parkway, Aiken, SC, 29801, USA.

Published: January 2022

We used diffusive gradients in thin films (DGT) to measure potentially bioavailable metals in coastal plain streams in the southeastern USA that exhibited strong to moderate blackwater characteristics. Metals were partitioned into particulate metals, DGT-inert metals (i.e., colloidal and refractory organic complexes not accumulated by DGT), and DGT-labile metals (i.e., free metal ions, small inorganic complexes, and labile organic complexes). We also examined the influence of different DGT deployment times using data collected from the field and a follow-up laboratory study. The DGT-measured fraction of dissolved metals in the streams was 15% for Cd, 21% for Zn, 33% for Cu, 37% for Pb, and 98% for Mn. Metals bound to particulates predominated only for Pb. Most of the Cd, Pb, Zn, and Cu were associated with colloids, refractory organic complexes, or particles. Relatively small amounts were in free ion or labile complexes likely to be bioavailable through respiratory surfaces. Modeled concentrations of free and inorganically bound Cu and Pb were lower than the DGT fraction indicating that DGT accumulated some organically bound Cu and Pb that might not have been bioavailable. DGT-exposure times in excess of 5 days may have contributed to the accumulation of partly labile organic-metal complexes and were associated with substantial biofouling that caused metal uptake by DGT to depart from linearity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-021-09740-5DOI Listing

Publication Analysis

Top Keywords

organic complexes
12
diffusive gradients
8
gradients thin
8
thin films
8
films dgt
8
dgt measure
8
measure bioavailable
8
metals
8
bioavailable metals
8
southeastern usa
8

Similar Publications

Catalytic Asymmetric Dehydrogenative Si-H/X-H Coupling toward Si-Stereogenic Silanes.

Acc Chem Res

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.

View Article and Find Full Text PDF

Attention-Based Interpretable Multiscale Graph Neural Network for MOFs.

J Chem Theory Comput

January 2025

The State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.

Metal-organic frameworks (MOFs) hold great potential in gas separation and storage. Graph neural networks (GNNs) have proven effective in exploring structure-property relationships and discovering new MOF structures. Unlike molecular graphs, crystal graphs must consider the periodicity and patterns.

View Article and Find Full Text PDF

Miniaturized spectral sensing with a tunable optoelectronic interface.

Sci Adv

January 2025

QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076 Aalto, Finland.

Reconstructive optoelectronic spectroscopy has generated substantial interest in the miniaturization of traditional spectroscopic tools, such as spectrometers. However, most state-of-the-art demonstrations face fundamental limits of rank deficiency in the photoresponse matrix. In this work, we demonstrate a miniaturized spectral sensing system using an electrically tunable compact optoelectronic interface, which generates distinguishable photoresponses from various input spectra, enabling accurate spectral identification with a device footprint of 5 micrometers by 5 micrometers.

View Article and Find Full Text PDF

Developing new materials capable of the safe and efficient removal of toxic substances has become a research hotspot in the field of materials science, as these toxic substances pose a serious threat to human health, both directly and indirectly. Covalent organic frameworks (COFs), as an emerging class of crystalline porous materials, have advantages such as large specific surface area, tunable pore size, designable structure, and good biocompatibility, which have been proven to be a superior adsorbent design platform for toxic substances capture. This review will summarize the synthesis methods of COFs and the properties and characteristics of typical toxicants, discuss the design strategies of COF-based adsorbents for the removal of toxic substances, and highlight the recent advancements in COF-based adsorbents as robust candidates for the efficient removal of various types of toxicants, such as animal toxins, microbial toxins, phytotoxins, environmental toxins, The adsorption performance and related mechanisms of COF-based adsorbents for different types of toxic substances will be discussed.

View Article and Find Full Text PDF

Multifunctional plant growth-promoting rhizobacteria (PGPR) have garnered significant attention in agricultural applications; however, a few have applied them in crop rotation or intercropping fields. To identify PGPR with strong colonization ability and broad spectrum benefit, we screened strains from the local tobacco rhizosphere and evaluated their growth-promoting effects across various crops and farming systems. In this study, strain L8, identified as , was selected as a multifunctional PGPR capable of producing indole-3-acetic acid (IAA), solubilizing potassium, and mobilizing both organic and inorganic phosphorus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!