Nanomaterials for Remediation of Environmental Pollutants.

Bioinorg Chem Appl

Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University, Dembi Dolo, Ethiopia.

Published: December 2021

Today, environmental contamination is a big concern for both developing and developed countries. The primary sources of contamination of land, water, and air are extensive industrialization and intense agricultural activities. Various traditional methods are available for the treatment of different pollutants in the environment, but all have some limitations. Due to this, an alternative method is required which is effective and less toxic and provides better outcomes. Nanomaterials have attracted a lot of interest in terms of environmental remediation. Because of their huge surface area and related high reactivity, nanomaterials perform better in environmental clean-up than other conventional approaches. They can be modified for specific uses to provide novel features. Due to the large surface-area-to-volume ratio and the presence of a larger number of reactive sites, nanoscale materials can be extremely reactive. These characteristics allow for higher interaction with contaminants, leading to a quick reduction of contaminant concentration. In the present review, an overview of different nanomaterials that are potential in the remediation of environmental pollutants has been discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727162PMC
http://dx.doi.org/10.1155/2021/1764647DOI Listing

Publication Analysis

Top Keywords

remediation environmental
8
environmental pollutants
8
environmental
5
nanomaterials
4
nanomaterials remediation
4
pollutants today
4
today environmental
4
environmental contamination
4
contamination big
4
big concern
4

Similar Publications

Enhanced CH emissions from global wildfires likely due to undetected small fires.

Nat Commun

January 2025

Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

Monitoring methane (CH) emissions from terrestrial ecosystems is essential for assessing the relative contributions of natural and anthropogenic factors leading to climate change and shaping global climate goals. Fires are a significant source of atmospheric CH, with the increasing frequency of megafires amplifying their impact. Global fire emissions exhibit large spatiotemporal variations, making the magnitude and dynamics difficult to characterize accurately.

View Article and Find Full Text PDF

The generation of radicals through photo-Fenton-like reactions demonstrates significant potential for remediating emerging organic contaminants (EOCs) in complex aqueous environments. However, the excitonic effect, induced by Coulomb interactions between photoexcited electrons and holes, reduces carrier utilization efficiency in these systems. In this study, we develop Cu single-atom-loaded covalent organic frameworks (Cu/COFs) as models to modulate excitonic effects.

View Article and Find Full Text PDF

Sequestration of Cr(VI) onto polyethyleneimine-derivatized cellulose and its effect on the enzymatic degradation and microbiome viability.

Int J Biol Macromol

January 2025

Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India. Electronic address:

The extremely hazardous nature of Cr(VI) necessitates its sequestration in a sustainable and effective manner. Cellulose-derived materials, known for their eco-friendly properties, are widely employed in environmental remediation. To improve its adsorption capabilities for heavy metals, cellulose is often derivatized with moieties like amine, thiol, carboxylic acid, etc.

View Article and Find Full Text PDF

The severe contamination of the plasticiser dibutyl phthalate (DBP) in agriculture soils is often accompanied by a decrease in nutrient utilisation. Though the combined application of a variety of microorganisms can simultaneously address the problems of soil contamination and nutrient deprivation, the activity and function of microorganisms can be severely inhibited by DBP, and studies on their protection under DBP contamination are almost non-existent. In this study, a compound bacterial agent KPSB was prepared by optimising with FeO-modified biochar loaded with DBP-degrading bacterium Enterobacterium sp.

View Article and Find Full Text PDF

An online segmented continuous flow analysis system for rapid determining chemical oxygen demand in seawater to assess organic pollution levels.

Mar Pollut Bull

January 2025

Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, CAS Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong 264003, China. Electronic address:

By integrating ultraviolet (UV) photocatalytic oxidation digestion with segmented continuous flow analysis technology, an online measurement method and analysis system for the alkaline chemical oxygen demand (COD) in seawater, based on the color-change reaction of potassium permanganate, has been established. This represents the first application of UV photocatalytic oxidation technology in the measurement of COD in seawater. The system effectively overcomes the limitations of high-temperature and high-pressure digestion methods employed in traditional COD analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!