Porous SiO nanospheres were modified with different loadings of ZrO to obtain catalysts with a Si/Zr molar ratio from 2.5 to 30. These materials were characterized by X-ray diffraction, transmission and scanning electron microscopies, N adsorption-desorption at -196 °C, X-ray photoelectron spectroscopy and pyridine and 2-6-dimethylpyridine thermoprogrammed desorption. The characterization of these catalysts has revealed that a high proportion of Zr favors the formation of Lewis acid sites, which are implied in catalytic transfer hydrogenation processes, whereas the low Brönsted acidity promotes a dehydration reaction, being possible to give rise to a large variety of products from furfural through consecutive reactions, such as furfuryl alcohol, i-propyl furfuryl ether, i-propyl levulinate, and γ-valerolactone, in a range of temperature of 110-170 °C and 1-6 h of reaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8721592 | PMC |
http://dx.doi.org/10.1021/acs.iecr.1c02848 | DOI Listing |
Langmuir
January 2025
College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China.
In order to solve the shortcomings of a single flocculant, the inorganic-organic hybrid flocculant SiO-CTS-DMDACC was successfully prepared by grafting copolymerization of chitosan (CTS), dimethyl diallyl ammonium chloride (DMDACC), and silicon dioxide (SiO). The performance of SiO-CTS-DMDACC in treating papermaking wastewater was investigated, and the mechanism of the flocculation process was analyzed. The results showed that the crystallinity of chitosan was reduced due to the introduction of DMDACC and SiO.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China. Electronic address:
The carboxymethyl chitosan (CMCS)-based porous beads are still criticized for their limited number of binding sites, which impairs their efficacy in removing aqueous pollutants. To overcome this challenge, this work introduces the production of covalently crosslinked CMCS-based beads containing SiO and poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). The porous composite beads not only possess remarkable stability under acidic conditions, but also have abundant active binding sites for adsorption.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.
Choline is an important molecule in monitoring food safety and infant nutrition. Here, we report Ce nanogels synthesized by atom transfer radical polymerization (ATRP) employing Ce-coordinated acryloyl-lysine polymer brushes (Ce@SiO NGs) as highly efficient cascade nanozymes for colorimetric detection of choline. The synthesized Ce@SiO NGs demonstrated remarkable peroxidase-like activity with a porous exterior, which are essential to entrap choline oxidase (COx) to yield COx@Ce@SiO NGs and construct a cascade reaction system to detect choline.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States. Electronic address:
Polymer nanocomposites with high concentrations of nanoparticles (NPs) possess exceptional mechanical, transport, and thermal properties. To enable their widespread use in structural applications and functional coatings, it is crucial to understand how nanoconfinement and the polymer-NP interface influence polymer degradation under various environmental conditions, including prolonged UV exposure. In this study, we investigate the photooxidative degradation of polystyrene (PS)-confined in the interstices of SiO NP films.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan. Electronic address:
Hydrogels are highly porous, hydrophilic, insoluble, 3D networks with a large capacity for water absorption. The goal of this research was to formulate sodium alginate/silica (SA/SiO) hydrogel and hydrogel nanocomposite (SA/SiO/ZnO-NPs) by impregnating the ZnO-NPs and cross-linking was furnished with siloxane network making use of the sol-gel method. The synthesized hydrogel/hydrogel nanocomposite was analyzed with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Zeta-sizer, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermo-gravimetric analyzer (TGA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!