Consensus about a standard segmentation method to derive metabolic tumor volume (MTV) in classical Hodgkin lymphoma (cHL) is lacking, and it is unknown how different segmentation methods influence quantitative PET features. Therefore, we aimed to evaluate the delineation and completeness of lesion selection and the need for manual adaptation with different segmentation methods, and to assess the influence of segmentation methods on the prognostic value of MTV, intensity, and dissemination radiomics features in cHL patients. We analyzed a total of 105 F-FDG PET/CT scans from patients with newly diagnosed ( = 35) and relapsed/refractory ( = 70) cHL with 6 segmentation methods: 2 fixed thresholds on SUV4.0 and SUV2.5, 2 relative methods of 41% of SUV (41max) and a contrast-corrected 50% of SUV (A50P), and 2 combination majority vote (MV) methods (MV2, MV3). Segmentation quality was assessed by 2 reviewers on the basis of predefined quality criteria: completeness of selection, the need for manual adaptation, and delineation of lesion borders. Correlations and prognostic performance of resulting radiomics features were compared among the methods. SUV4.0 required the least manual adaptation but tended to underestimate MTV and often missed small lesions with low F-FDG uptake. SUV2.5 most frequently included all lesions but required minor manual adaptations and generally overestimated MTV. In contrast, few lesions were missed when using 41max, A50P, MV2, and MV3, but these segmentation methods required extensive manual adaptation and overestimated MTV in most cases. MTV and dissemination features significantly differed among the methods. However, correlations among methods were high for MTV and most intensity and dissemination features. There were no significant differences in prognostic performance for all features among the methods. A high correlation existed between MTV, intensity, and most dissemination features derived with the different segmentation methods, and the prognostic performance is similar. Despite frequently missing small lesions with low F-FDG avidity, segmentation with a fixed threshold of SUV4.0 required the least manual adaptation, which is critical for future research and implementation in clinical practice. However, the importance of small, low F-FDG-avidity lesions should be addressed in a larger cohort of cHL patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454468PMC
http://dx.doi.org/10.2967/jnumed.121.263067DOI Listing

Publication Analysis

Top Keywords

segmentation methods
28
manual adaptation
20
intensity dissemination
16
methods
13
mtv intensity
12
prognostic performance
12
dissemination features
12
segmentation
10
metabolic tumor
8
tumor volume
8

Similar Publications

Integration of artificial intelligence (AI) into radiology practice can create opportunities to improve diagnostic accuracy, workflow efficiency, and patient outcomes. Integration demands the ability to seamlessly incorporate AI-derived measurements into radiology reports. Common data elements (CDEs) define standardized, interoperable units of information.

View Article and Find Full Text PDF

Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.

View Article and Find Full Text PDF

Purpose: To comprehensively compare the diagnostic ability and inter-reader agreement of magnetic resonance imaging (MRI) findings for predicting massive hemorrhage after cesarean section in patients with placental malposition, aiming to identify the most reliable and objective indicators.

Methods: Totally, 148 consecutive patients with placental malposition underwent MRI and cesarean section at our hospital between January 2014 and July 2021. The patients were divided into massive and non-massive hemorrhage groups.

View Article and Find Full Text PDF

Teravoxel-scale, cellular-resolution images of cleared rodent brains acquired with light-sheet fluorescence microscopy have transformed the way we study the brain. Realizing the potential of this technology requires computational pipelines that generalize across experimental protocols and map neuronal activity at the laminar and subpopulation-specific levels, beyond atlas-defined regions. Here, we present artficial intelligence-based cartography of ensembles (ACE), an end-to-end pipeline that employs three-dimensional deep learning segmentation models and advanced cluster-wise statistical algorithms, to enable unbiased mapping of local neuronal activity and connectivity.

View Article and Find Full Text PDF

The failure of locked-segment landslides is associated with the destruction of locked segments that exhibit an energy accumulation effect. Thus, understanding their failure mode and instability mechanism for landslide hazard prevention and control is critical. In this paper, multiple instruments, such as tilt sensors, pore water pressure gauges, moisture sensors, matrix suction sensors, resistance strain gauges, miniature earth pressure sensors, a three-dimensional (3D) laser scanner, and a camera, were used to conduct the physical model tests on the rainfall-induced arch locked-segment landslide to analyze the resulting tilting deformation and evolution mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!