Background: The blood-cerebrospinal fluid (CSF) barrier (BCSFB) is critically important to the pathophysiology of the central nervous system (CNS). However, this barrier prevents the safe transmission of beneficial drugs from the blood to the CSF and thus the spinal cord and brain, limiting their effectiveness in treating a variety of CNS diseases.

Methods: This study demonstrates a method on SD rats for reversible and site-specific opening of the BCSFB via a noninvasive, low-energy focused shockwave (FSW) pulse (energy flux density 0.03 mJ/mm) with SonoVue microbubbles (2 × 10 MBs/kg), posing a low risk of injury.

Results: By opening the BCSFB, the concentrations of certain CNS-impermeable indicators (70 kDa Evans blue and 500 kDa FITC-dextran) and drugs (penicillin G, doxorubicin, and bevacizumab) could be significantly elevated in the CSF around both the brain and the spinal cord. Moreover, glioblastoma model rats treated by doxorubicin with this FSW-induced BCSFB (FSW-BCSFB) opening technique also survived significantly longer than untreated controls.

Conclusion: This is the first study to demonstrate and validate a method for noninvasively and selectively opening the BCSFB to enhance drug delivery into CSF circulation. Potential applications may include treatments for neurodegenerative diseases, CNS infections, brain tumors, and leptomeningeal carcinomatosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8740485PMC
http://dx.doi.org/10.1186/s12987-021-00303-xDOI Listing

Publication Analysis

Top Keywords

opening bcsfb
12
drug delivery
8
central nervous
8
nervous system
8
blood-cerebrospinal fluid
8
spinal cord
8
opening
5
bcsfb
5
facilitating drug
4
delivery central
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!